Application of Integrable Systems to Phase Transitions

CHF 76.30
Auf Lager
SKU
TUBJNQ27S40
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 07.10.2025 und Mi., 08.10.2025

Details

This book practical book applies integrable systems to solve the phase transition problems. It provides a unified model for the densities of eigenvalues in quantum chromodynamics (QCD).

The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory.


First book in the field of matrix models to apply integrable systems to solve the phase transition problems The only book to date to provide a unified model for the densities of eigenvalues in quantum chromodynamics (QCD) An application book but with rigorous mathematical proofs to present a systematic classification of phase transition models in the momentum aspect Includes supplementary material: sn.pub/extras

Autorentext

The author obtained his Ph.D in mathematics at University of Pittsburgh in 1998. Then he worked at University of California, Davis, as a visiting research assistant professor for one year before he started working in industry. The Marcenko-Pastur distribution in econophysics inspired him to search a unified model for the eigenvalue densities in the matrix models. The phase transition models discussed in this book are based on the Gross-Witten third-order phase transition model and the researches on transition problems in complex systems and data clustering. He is now a data scientist at Institute of Analysis, MI, USA. Email: chiebingwang@yahoo.com


Inhalt
Introduction.- Densities in Hermitian Matrix Models.- Bifurcation Transitions and Expansions.- Large-N Transitions and Critical Phenomena.- Densities in Unitary Matrix Models.- Transitions in the Unitary Matrix Models.- Marcenko-Pastur Distribution and McKay's Law.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 518g
    • Autor C. B. Wang
    • Titel Application of Integrable Systems to Phase Transitions
    • Veröffentlichung 30.07.2013
    • ISBN 3642385648
    • Format Fester Einband
    • EAN 9783642385643
    • Jahr 2013
    • Größe H241mm x B160mm x T18mm
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 232
    • Lesemotiv Verstehen
    • Auflage 2013
    • GTIN 09783642385643

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.