Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Axiom Independence
CHF 48.95
Auf Lager
SKU
TC2CII3V1R1
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! An axiom P is independent if there is no other axiom Q such that Q implies P. In many cases independency is desired, either to reach the conclusion of a reduced set of axioms, or to be able to replace an independent axiom to create a more concise system (for example, the parallel postulate is independent of Euclid's Axioms, and can provide interesting results when a negated or manipulated form of the postulate is put into its place). Proving independence is usually a simple logical task. If we are trying to prove an axiom Q independent, then the set of all the other axioms P can't imply Q. One way of doing this is by proving that the negation of the set of axioms P implies Q, it then follows by the law of contradiction that P can't imply Q, because if that were the case then P and not P would both imply Q, and that would be a logical contradiction.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131173424
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131173424
- Format Fachbuch
- Titel Axiom Independence
- Herausgeber Betascript Publishing
- Anzahl Seiten 120
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung