Axiom Independence

CHF 49.30
Auf Lager
SKU
TC2CII3V1R1
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Do., 30.10.2025 und Fr., 31.10.2025

Details

High Quality Content by WIKIPEDIA articles! An axiom P is independent if there is no other axiom Q such that Q implies P. In many cases independency is desired, either to reach the conclusion of a reduced set of axioms, or to be able to replace an independent axiom to create a more concise system (for example, the parallel postulate is independent of Euclid's Axioms, and can provide interesting results when a negated or manipulated form of the postulate is put into its place). Proving independence is usually a simple logical task. If we are trying to prove an axiom Q independent, then the set of all the other axioms P can't imply Q. One way of doing this is by proving that the negation of the set of axioms P implies Q, it then follows by the law of contradiction that P can't imply Q, because if that were the case then P and not P would both imply Q, and that would be a logical contradiction.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131173424
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131173424
    • Format Fachbuch
    • Titel Axiom Independence
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 120
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.