Basic Concepts in Computational Physics

CHF 84.00
Auf Lager
SKU
2L2OCBLVPMH
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

This new edition is a concise introduction to the basic methods of computational physics. Readers will discover the benefits of numerical methods for solving complex mathematical problems and for the direct simulation of physical processes.

The book is divided into two main parts: Deterministic methods and stochastic methods in computational physics. Based on concrete problems, the first part discusses numerical differentiation and integration, as well as the treatment of ordinary differential equations. This is extended by a brief introduction to the numerics of partial differential equations. The second part deals with the generation of random numbers, summarizes the basics of stochastics, and subsequently introduces Monte-Carlo (MC) methods. Specific emphasis is on MARKOV chain MC algorithms. The final two chapters discuss data analysis and stochastic optimization. All this is again motivated and augmented by applications from physics. Inaddition, the book offers a number of appendices to provide the reader with information on topics not discussed in the main text.

Numerous problems with worked-out solutions, chapter introductions and summaries, together with a clear and application-oriented style support the reader. Ready to use C++ codes are provided online.


Now with ready to use C++ program code available online Contains heavily expanded chapters on molecular dynamics, PDEs, random generators, Monte Carlo applications, data analysis and data optimization Presents deterministic methods are presented on a par with stochastic methods Mathematically precise, but driven by the needs of physicists Extensive appendices deepen the knowledge and present the mathematical basis

Autorentext
Ewald Schachinger is a Professor in the Institute for Theoretical and Computational Physics in Graz University of Technology, Austria.
Benjamin A. Stickler is a Professor in the Institute of Theoretical Physics at the University of Duisburg-Essen, Germany.


Inhalt
Some Basic Remarks.- Part I Deterministic Methods.- Numerical Differentiation.- Numerical Integration.- The KEPLER Problem.- Ordinary Differential Equations Initial Value Problems.- The Double Pendulum.- Molecular Dynamics.- Numerics of Ordinary Differential Equations - Boundary Value Problems.- The One-Dimensional Stationary Heat Equation.- The One-Dimensional Stationary SCHRÖDINGER Equation.- Partial Differential Equations.- Part II Stochastic Methods.- Pseudo Random Number Generators.- Random Sampling Methods.- A Brief Introduction to Monte-Carlo Methods.- The ISING Model.- Some Basics of Stochastic Processes.- The Random Walk and Diffusion Theory.- MARKOV-Chain Monte Carlo and the POTTS Model.- Data Analysis.- Stochastic Optimization.- Appendix: The Two-Body Problem.- Solving Non-Linear Equations. The NEWTON Method.- Numerical Solution of Systems of Equations.- Fast Fourier Transform.- Basics of Probability Theory.- Phase Transitions.- Fractional Integrals and Derivatives in1D.- Least Squares Fit.- Deterministic Optimization.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 645g
    • Autor Ewald Schachinger , Benjamin A. Stickler
    • Titel Basic Concepts in Computational Physics
    • Veröffentlichung 25.04.2018
    • ISBN 3319801031
    • Format Kartonierter Einband
    • EAN 9783319801032
    • Jahr 2018
    • Größe H235mm x B155mm x T24mm
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 428
    • Lesemotiv Verstehen
    • Auflage Softcover reprint of the original 2nd edition 2016
    • GTIN 09783319801032

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.