Clifford Algebras and Lie Theory

CHF 187.70
Auf Lager
SKU
675CQHRK4N1
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 15.10.2025 und Do., 16.10.2025

Details

This book covers the basics of Clifford algebras and spinor modules, with applications to the theory of Lie groups. Topics include Petracci's proof of the Poincare-Birkhoff-Witt theorem, quantized Weil algebras, Duflo's theorem for quadratic Lie algebras and more.

This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan's famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci's proof of the PoincaréBirkhoffWitt theorem.This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo's theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant's structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his Clifford algebra analogue of the HopfKoszulSamelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra.Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.

Convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics Included are many developments from the last 15 years, drawn in part from the author's research Largely self-contained exposition Includes supplementary material: sn.pub/extras

Autorentext

Main areas of research are symplectic geometry, with applications to Lie theory and mathematical physics.

Professor at the University of Toronto since 1998.

Honors include: Fellowship of the Royal Society of Canada (since 2008), Steacie Fellowship (2007), McLean Award (2003), Andre Aisenstadt Prize (2001).

Invited speaker at the 2002 ICM in Beijing.


Inhalt

Preface.- Conventions.- List of Symbols.- 1 Symmetric bilinear forms.- 2 Clifford algebras.- 3 The spin representation.- 4 Covariant and contravariant spinors.- 5 Enveloping algebras.- 6 Weil algebras.- 7 Quantum Weil algebras.- 8 Applications to reductive Lie algebras.- 9 D(g; k) as a geometric Dirac operator.- 10 The HopfKoszulSamelson Theorem.- 11 The Clifford algebra of a reductive Lie algebra.- A Graded and filtered super spaces.- B Reductive Lie algebras.- C Background on Lie groups.- References.- Index.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer Berlin Heidelberg
    • Gewicht 682g
    • Untertitel Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Su
    • Autor Eckhard Meinrenken
    • Titel Clifford Algebras and Lie Theory
    • Veröffentlichung 16.03.2013
    • ISBN 364236215X
    • Format Fester Einband
    • EAN 9783642362156
    • Jahr 2013
    • Größe H241mm x B160mm x T24mm
    • Anzahl Seiten 344
    • Lesemotiv Verstehen
    • Auflage 2013
    • GTIN 09783642362156

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.