Computer Vision - ACCV 2020

CHF 144.00
Auf Lager
SKU
LRGBMEEPHB6
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 22.10.2025 und Do., 23.10.2025

Details

The six volume set of LNCS 12622-12627 constitutes the proceedings of the 15th Asian Conference on Computer Vision, ACCV 2020, held in Kyoto, Japan, in November/ December 2020.* The total of 254 contributions was carefully reviewed and selected from 768 submissions during two rounds of reviewing and improvement. The papers focus on the following topics:

Part I: 3D computer vision; segmentation and grouping

Part II: low-level vision, image processing; motion and tracking

Part III: recognition and detection; optimization, statistical methods, and learning; robot vision Part IV: deep learning for computer vision, generative models for computer vision Part V: face, pose, action, and gesture; video analysis and event recognition; biomedical image analysis

Part VI: applications of computer vision; vision for X; datasets and performance analysis

*The conference was held virtually.


Inhalt
3D Computer Vision.- Weakly-supervised Reconstruction of 3D Objects with Large Shape Variation from Single In-the-Wild Images.- HPGCNN: Hierarchical Parallel Group Convolutional Neural Networks for Point Clouds Processing.- 3D Object Detection and Pose Estimation of Unseen Objects in Color Images with Local Surface Embeddings.- Reconstructing Creative Lego Models, George Tattersall.- Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People.- Learning Global Pose Features in Graph Convolutional Networks for 3D Human Pose Estimation.- SGNet: Semantics Guided Deep Stereo Matching.- Reconstructing Human Body Mesh from Point Clouds by Adversarial GP Network.- SDP-Net: Scene Flow Based Real-time Object Detection and Prediction from Sequential 3D Point Clouds.- SAUM: Symmetry-Aware Upsampling Module for Consistent Point Cloud Completion.- Faster Self-adaptive Deep Stereo.- AFN: Attentional Feedback Network based 3D Terrain Super-Resolution.- Bi-Directional Attention for Joint Instance and Semantic Segmentation in Point Clouds.- Anatomy and Geometry Constrained One-Stage Framework for 3D Human Pose Estimation.- DeepVoxels++: Enhancing the Fidelity of Novel View Synthesis from 3D Voxel Embeddings.- Dehazing Cost Volume for Deep Multi-view Stereo in Scattering Media.- Homography-based Egomotion Estimation Using Gravity and SIFT Features.- Mapping of Sparse 3D Data using Alternating Projection.- Best Buddies Registration for Point Clouds.- Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data.- Dynamic Depth Fusion and Transformation for Monocular 3D Object Detection.- Attention-Aware Feature Aggregation for Real-time Stereo Matching on Edge Devices.- FKAConv: Feature-Kernel Alignment for Point Cloud Convolution.- Sparse Convolutions on Continuous Domains for Point Cloud and Event Stream Networks.- IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image.- Attended-Auxiliary Supervision Representation for Face Anti-spoofing.- 3D Object Detection from Consecutive Monocular Images.- Data-Efficient Ranking Distillation for Image Retrieval.- Quantum Robust Fitting.- HDD-Net: Hybrid Detector Descriptor with Mutual Interactive Learning.- Segmentation and Grouping.- RGB-D Co-attention Network for Semantic Segmentation.- Semantics through Time: Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation.- Dense Dual-Path Network for Real-time Semantic Segmentation.- Learning More Accurate Features for Semantic Segmentation in CycleNet.- 3D Guided Weakly Supervised Semantic Segmentation.- Real-Time Segmentation Networks should be Latency Aware.- Mask-Ranking Network for Semi-Supervised Video Object Segmentation.- SDCNet: Size Divide and Conquer Network for Salient Object Detection.- Bidirectional Pyramid Networks for Semantic Segmentation.- DEAL: Difficulty-aware Active Learning for Semantic Segmentation.- EPSNet: Efficient Panoptic Segmentation Network with Cross-layer Attention Fusion.- Local Context Attention for Salient Object Segmentation.- Generic Image Segmentation in Fully Convolutional Networks by Superpixel Merging Map.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030695248
    • Auflage 1st edition 2021
    • Editor Hiroshi Ishikawa, Jianbo Shi, Tomas Pajdla, Cheng-Lin Liu
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T41mm
    • Jahr 2021
    • EAN 9783030695248
    • Format Kartonierter Einband
    • ISBN 3030695247
    • Veröffentlichung 27.02.2021
    • Titel Computer Vision - ACCV 2020
    • Untertitel 15th Asian Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020, Revised Selected Papers, Part I
    • Gewicht 1130g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 760
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.