Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes

CHF 149.20
Auf Lager
SKU
G2EE2F89227
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

Early and accurate fault detection and diagnosis for modern chemical plants can minimise downtime, increase the safety of plant operations, and reduce manufacturing costs. The process-monitoring techniques that have been most effective in practice are based on models constructed almost entirely from process data. The goal of the book is to present the theoretical background and practical techniques for data-driven process monitoring. Process-monitoring techniques presented include: Principal component analysis; Fisher discriminant analysis; Partial least squares; Canonical variate analysis.
The text demonstrates the application of all of the data-driven process monitoring techniques to the Tennessee Eastman plant simulator - demonstrating the strengths and weaknesses of each approach in detail. This aids the reader in selecting the right method for his process application. Plant simulator and homework problems in which students apply the process-monitoring techniques to a nontrivial simulated process, and can compare their performance with that obtained in the case studies in the text are included. A number of additional homework problems encourage the reader to implement and obtain a deeper understanding of the techniques.
The reader will obtain a background in data-driven techniques for fault detection and diagnosis, including the ability to implement the techniques and to know how to select the right technique for a particular application.

Covers a variety of data-driven process monitoring techniques Includes detailed applications in chemical plant simulation Includes homework problems to enable deeper comprehension of the text

Inhalt
I. Introduction.- 1. Introduction.- II. Background.- 2. Multivariate Statistics.- 3. Pattern Classification.- III. Methods.- 4. Principal Component Analysis.- 5. Fisher Discriminant Analysis.- 6. Partial Least Squares.- 7. Canonical Variate Analysis.- IV. Application.- 8. Tennessee Eastman Process.- 9. Application Description.- 10. Results and Discussion.- V. Other Approaches.- 11. Overview of Analytical and Knowledge-based Approaches.- References.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 330g
    • Untertitel Advances in Industrial Control
    • Autor Evan L. Russell , Richard D. Braatz , Leo H. Chiang
    • Titel Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes
    • Veröffentlichung 01.11.2012
    • ISBN 1447111338
    • Format Kartonierter Einband
    • EAN 9781447111337
    • Jahr 2012
    • Größe H235mm x B155mm x T12mm
    • Herausgeber Springer London
    • Anzahl Seiten 212
    • Lesemotiv Verstehen
    • Auflage 2000
    • GTIN 09781447111337

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.