Data Mining for Systems Biology

CHF 229.45
Auf Lager
SKU
9SO1FF4ASQA
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mo., 20.10.2025 und Di., 21.10.2025

Details

This fully updated book collects numerous data mining techniques, reflecting the acceleration and diversity of the development of data-driven approaches to the life sciences. The first half of the volume examines genomics, particularly metagenomics and epigenomics, which promise to deepen our knowledge of genes and genomes, while the second half of the book emphasizes metabolism and the metabolome as well as relevant medicine-oriented subjects. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that is useful for getting optimal results.
Authoritative and practical, Data Mining for Systems Biology: Methods and Protocols, Second Edition serves as an ideal resource for researchers of biology and relevant fields, such as medical, pharmaceutical, and agricultural sciences, as well as for the scientists and engineers who are working on developing data-driven techniques, such as databases, data sciences, data mining, visualization systems, and machine learning or artificial intelligence that now are central to the paradigm-altering discoveries being made with a higher frequency.

Includes cutting-edge techniques for data mining in systems biology Provides step-by-step guidance essential for reproducible results Contains expert tips and implementation advice from practitioners in the field

Inhalt
Identifying Bacterial Strains from Sequencing Data.- MetaVW: Large-Scale Machine Learning for Metagenomics Sequence Classification.- Online Interactive Microbial Classification and Geospatial Distributional Analysis Using BioAtlas.- Generative Models for Quantification of DNA Modifications.- DiMmer: Discovery of Differentially Methylated Regions in Epigenome-Wide Association Study (EWAS) Data.- Implementing a Transcription Factor Interaction Prediction System Using the GenoMetric Query Language.- Multiple Testing Tool to Detect Combinatorial Effects in Biology.- SiBIC: A Tool for Generating a Network of Biclusters Captured by Maximal Frequent Itemset Mining.- Computing and Visualizing Gene Function Similarity and Coherence with NaviGO.- Analyzing Glycan Binding Profiles Using Weighted Multiple Alignment of Trees.- Analysis of Fluxomic Experiments with Principal Metabolic Flux Mode Analysis.- Analyzing Tandem Mass Spectra Using the DRIP Toolkit: Training, Searching, and Post-Processing.- Sparse Modeling to Analyze Drug-Target Interaction Networks.- DrugE-Rank: Predicting Drug-Target Interactions by Learning to Rank.- MeSHLabeler and DeepMeSH: Recent Progress in Large-Scale MeSH Indexing.- Disease Gene Classification with Metagraph Representations.- Inferring Antimicrobial Resistance from Pathogen Genomes in KEGG.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer New York
    • Gewicht 685g
    • Untertitel Methods and Protocols
    • Titel Data Mining for Systems Biology
    • Veröffentlichung 21.07.2018
    • ISBN 1493985604
    • Format Fester Einband
    • EAN 9781493985609
    • Jahr 2018
    • Größe H260mm x B183mm x T20mm
    • Anzahl Seiten 256
    • Lesemotiv Verstehen
    • Editor Hiroshi Mamitsuka
    • Auflage Second Edition 2018
    • GTIN 09781493985609

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.