Detection of Sigmatism with the aid of Machine Learning
Details
The book is devoted to automatic detection of sigmatism in adult speech of German speakers. It has two major purposes: (1) to find an optimal set of audio features providing distinction between normal and disordered speech; (2) to create a Machine Learning (ML) classification algorithm able to analyze extracted features and detect sigmatism at phone level. The features are selected according to the phonetic background of considered sounds.They include first three formants, root-mean-square (RMS) amplitude, spectral peaks, spectral centroid, spectral skewness, and first 12 mel-frequency cepstral coefficients (MFCCs). Three ML methods are considered for sigmatism detection: Support Vector Machine, Gaussian Process, and Neural Networks. The process of feature extraction as well as automatic classification are conducted via Python scripts. As a result, the model based on SVM with the RBF kernel showed the highest accuracy rate of 90.6 %.
Autorentext
O meu nome é Kristina. Estou estudando e trabalhando na área de tecnologias da fala e da linguagem. Meu objetivo pessoal é adquirir habilidades e conhecimentos que eu possa usar para o bem público, tornando a vida das pessoas mais confortável e segura com a ajuda de métodos e ferramentas de inteligência artificial (IA).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786204738581
- Sprache Englisch
- Größe H220mm x B150mm x T5mm
- Jahr 2022
- EAN 9786204738581
- Format Kartonierter Einband
- ISBN 6204738585
- Veröffentlichung 19.01.2022
- Titel Detection of Sigmatism with the aid of Machine Learning
- Autor Kristina Barabashova
- Untertitel for German Speakers
- Gewicht 137g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 80
- Genre Linguistics & Literature