Fatigue Detection Based on Biosignals and Facial Expressions
Details
Inattentiveness in drivers is the major contributing factor in road crashes. Inattention can be caused by fatigue. Alertness of a person is typically characterized by various visual cues like eyelid movement, gaze movement, head movement and facial expression which can then be extracted and concluded into drowsiness level. Mental state of the driver can also be determined by the EEG signals. Thus this project focuses on simultaneously combining multiple visual and non-visual cues to yield a more robust fatigue characterization than a single input. This approach combines facial expressions like eyelid movement and yawning for fatigue detection. The facial features are detected and then the interest points are traced using Harris corner point detection. The area covered by these interest points determines the presence or absence of drowsiness. We are also using EEG signals to deduce the mental state of driver for detection of fatigue making the system more reliable. Hence the system effectively combines the various characteristics to help avoid the mishaps caused due to the presence of fatigue in the drivers.
Autorentext
Engagierter, einfallsreicher Pädagoge, der nachweislich in der Lage ist, Strategien und Praktiken zu entwickeln und zu überwachen, die ein sicheres Lernumfeld fördern; gewährleistet und fördert kontinuierliche Verbesserungen für Schüler und Lehrer; entwickelt ein Umfeld, das eine offene Kommunikation mit Kollegen, Schülern, der Gemeinschaft und Mentoren fördert.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786139952670
- Genre Elektrotechnik
- Sprache Englisch
- Anzahl Seiten 52
- Größe H220mm x B150mm x T4mm
- Jahr 2018
- EAN 9786139952670
- Format Kartonierter Einband
- ISBN 6139952670
- Veröffentlichung 14.11.2018
- Titel Fatigue Detection Based on Biosignals and Facial Expressions
- Autor Manjusha Deshmukh , Pooja Rane
- Gewicht 96g
- Herausgeber LAP LAMBERT Academic Publishing