Geometry of 2-Weierstrass points on certain plane curves

CHF 56.05
Auf Lager
SKU
2G844I2OHBP
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 14.10.2025 und Mi., 15.10.2025

Details

We study the 2-Weierstrass points on quartic curves. If the curve has a cyclic covering structure over P¹( ), then the computation of 2-Weierstrass points is relatively easy (see Chapter 3). We deal with a 1-parameter family of smooth quartic curves without cyclic covering structures over P¹( ). Let Ca be the smooth plane quartic defined by the equation: F(x,y,z)=x +y +z +a(x²y²+x²z²+y²z²)=0, a -1,±2. The 1-Weierstrass points on Ca were extensively studied by Kuribayashi and his students, around 1980s. We call these quartic curves Kuribayashi quartics. In this book, we give the geometric classification of the 2-Weierstrass points on Kuribayashi quartics (see Chapter 2). In chapter 4, we study the 1-Weierstrass points on quintic curves, we see that a 1-Weierstrass point P of a smooth plane quintic C is either a flex or a sextactic point. Finally, we compute the 1-Weierstrass points on two 1-parameter families of singular plane quintics by computing special adjoint conics at these points.

Autorentext

studied Algebraic Curves, under supervision of Prof.Fumio SAKAI, at Saitama Univ., Japan. The author is a lecturer in Math. Depart.,Faculty of science, Sohag Univ., Egypt. He ranked as the First student (Excellent with Honors) in B.Sc., (2001). He was awarded Japanese Government scholarship for doctoral program (2006- 2010).

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 191g
    • Untertitel An Introduction to the geometry of higher order Weierstrass points
    • Autor Alwaleed Kamel
    • Titel Geometry of 2-Weierstrass points on certain plane curves
    • Veröffentlichung 20.05.2011
    • ISBN 3844397728
    • Format Kartonierter Einband
    • EAN 9783844397727
    • Jahr 2011
    • Größe H220mm x B150mm x T7mm
    • Anzahl Seiten 116
    • GTIN 09783844397727

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.