Homeomorphism

CHF 57.20
Auf Lager
SKU
1LGSIE8VDJ5
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 16.10.2025 und Fr., 17.10.2025

Details

In the mathematical field of topology, a homeomorphism or topological isomorphism or bicontinuous function (from the Greek words (homoios) = similar and (morph ) = shape, form) is a continuous function between two topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces that is, they are the mappings which preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. Roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a donut are not. An often-repeated joke is that topologists can't tell the coffee cup from which they are drinking from the donut they are eating, since a sufficiently pliable donut could be reshaped to the form of a coffee cup by creating a dimple and progressively enlarging it, while shrinking the hole into a handle.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130267865
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Sprache Englisch
    • Größe H220mm x B150mm x T9mm
    • Jahr 2009
    • EAN 9786130267865
    • Format Fachbuch
    • ISBN 978-613-0-26786-5
    • Titel Homeomorphism
    • Untertitel Mathematics, Topology, Greek language, Continuous function, Topological space, Inverse function, Isomorphism, Category of topological spaces, Topological property, Geometry, Square (geometry)
    • Gewicht 233g
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 144
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.