Homotopy Theory with Bornological Coarse Spaces

CHF 80.40
Auf Lager
SKU
E7A20KHEEEI
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 16.10.2025 und Fr., 17.10.2025

Details

Providing a new approach to assembly maps, this book develops the foundations of coarse homotopy using the language of infinity categories. It introduces the category of bornological coarse spaces and the notion of a coarse homology theory, and further constructs the universal coarse homology theory. Hybrid structures are introduced as a tool to connect large-scale with small-scale geometry, and are then employed to describe the coarse motives of bornological coarse spaces of finite asymptotic dimension. The remainder of the book is devoted to the construction of examples of coarse homology theories, including an account of the coarsification of locally finite homology theories and of coarse K-theory. Thereby it develops background material about locally finite homology theories and C*-categories.

The book is intended for advanced graduate students and researchers who want to learn about the homotopy-theoretical aspects of large scale geometry via the theory of infinity categories.


The first book devoted to a new branch of research; there is currently no comparable book Provides a quick overview of the basic concepts of coarse geometry in their natural generality Describes an approach to large scale homotopy theory using the language of infinity categories Offers an axiomatic approach to coarse homology theories applicable to the study of assembly maps Gives numerous detailed examples of coarse homology theories Shows how to systematically apply the general setting of bornological coarse spaces to index theory

Inhalt

  • Introduction. - Part I Motivic Coarse Spaces and Spectra. - Bornological Coarse Spaces. - Motivic Coarse Spaces. - Motivic Coarse Spectra. - Merging Coarse and Uniform Structures. - Part II Coarse and Locally Finite Homology Theories. - Locally Finite Homology Theories and Coarsification. - Coarse K-Homology.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer International Publishing
    • Gewicht 394g
    • Untertitel Lecture Notes in Mathematics 2269
    • Autor Alexander Engel , Ulrich Bunke
    • Titel Homotopy Theory with Bornological Coarse Spaces
    • Veröffentlichung 04.09.2020
    • ISBN 3030513343
    • Format Kartonierter Einband
    • EAN 9783030513344
    • Jahr 2020
    • Größe H235mm x B155mm x T15mm
    • Anzahl Seiten 256
    • Lesemotiv Verstehen
    • Auflage 1st edition 2020
    • GTIN 09783030513344

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.