Intermediate Mechanics of Materials

CHF 150.20
Auf Lager
SKU
JM6VVN3042P
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025

Details

This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions.

With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways ofgetting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end.

In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effectof manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load.

Additional material can be found on http://extras.springer.com/ .



Winner of the TAA 2012 Texty Textbook Excellence Award Examples are intelligible both mathematically and intuitively; Connects the subject matter to the everyday world as well as to engineering analysis; Emphasizes techniques that are useful in design studies Includes supplementary material: sn.pub/extras

Autorentext

J.R.BARBER

J.R.BARBER graduated in Mechanical Sciences from Cambridge University in 1963 and joined British Rail, who later sponsored his research at Cambridge between 1965 and 1968 on the subject of thermal effects in braking systems. In 1969 he became Lecturer and later Reader in Solid Mechanics at the University of Newcastle upon Tyne. In 1981 he moved to the University of Michigan, where he is presently Arthur F Thurnau Professor of Mechanical Engineering and Applied Mechanics. He is a Chartered Engineer in the U.K., Fellow of the Institution of Mechanical Engineers, and has engaged extensively in consulting work in the field of stress analysis for engineering design.

He is author of two books ('Elasticity' and 'Intermediate Mechanics of Materials') and over 160 articles in the fields of Elasticity, Thermoelasticity, Contact Mechanics, Tribology, Heat Conduction and Elastodynamics. He is a recipient of the Drucker Medal of ASME and the Archie Higdon DistinguishedEducator Award of ASEE. He has served as Associate Editor of the Journal of Applied Mechanics and Mathematical Problems in Engineering and is a member of the editorial boards of the International Journal of Mechanical Sciences, the Journal of Thermal Stresses, MilleChili Journal and Acta Tribologica.

http://www-personal.umich.edu/jbarber/


Inhalt

Introduction.- 1.1 The Engineering design process;1.2 Design optimization;1.2.1 Predicting the behaviour of the component.- 1.2.2 Approximate solutions.- 1.3 Relative magnitude of different effects.- 1.4 Formulating and solving problems.- 1.4.1 Use of procedures.- 1.4.2 Inverse problems.- 1.4.3 Physical uniqueness and existence arguments.- 1.5 Review of elementary mechanics of materials.- 1.5.1 Definition of stress components.- 1.5.2 Transformation of stress components.- 1.5.3 Displacement and strain.- 1.5.4 Hooke's law.- 1.5.5 Bending of beams.- 1.5.6 Torsion of circular bars.- 1.6 Summary.- Problems.- 2 Material Behaviour and Failure.- 2.1 Transformation of stresses.- 2.1.1 Review of two-dimensional results.- 2.1.2 Principal stresses in three dimensions.- 2.2 Failure theories for isotropic materials.- 2.2.1 The failure surface.- 2.2.2 The shape of the failure envelope.- 2.2.3 Ductile failure (yielding).- 2.2.4 Brittle failure.- 2.3 Cyclic loading and fatigue.- 2.3.1Experimental data.- 2.3.2 Statistics and the size effect.- 2.3.3 Factors influencing the design stress.- 2.3.4 Effect of combined stresses.- 2.3.5 Effect of a superposed mean stress.- 2.3.6 Summary of the design process.- 2.4 Summary.- Problems.- 3 Energy Methods.- 3.1 Work done on loading and unloading.- 3.2 Strain energy.- 3.3 Load-displacement relations.- 3.3.1 Beams with continuously varying bending moments.- 3.3.2 Axial loading and torsion.- 3.3.3 Combined loading.- 3.3.4 More general expressions for strain energy.- 3.3.5 Strain energy associated with shear forces in beams.- 3.4 Potential energy.- 3.5 The principle of stationary potential energy.- 3.5.1 Potential energy due to an external force.- 3.5.2 Problems with several degrees of freedom.- 3.5.3 Non-linear problems.- 3.6 The Rayleigh-Ritz method.- 3.6.1 Improving the accuracy.- 3.6.2 Improving the back of the envelope approximation.- 3.7 Castigliano's first theorem.- 3.8 Linear elastic systems.- 3.8.1 Strain energy.- 3.8.2 Bounds on the coefficients.- 3.8.3 Use of the reciprocal theorem.- 3.9 The stiffness matrix.- 3.9.1 Structures consisting of beams.- 3.9.2 Assembly of the stiffness matrix.- 3.10 Castigliano's second theorem.- 3.10.1 Use of the theorem.- 3.10.2 Dummy loads.- 3.10.3 Unit load method.- 3.10.4 Formal procedure for using Castigliano's second theorem.- 3.10.5 Statically indeterminate problems.- 3.10.6 Three-dimensional problems.- 3.11 Summary.- Problems.- 4 Unsymmetrical Bending.- 4.1 Stress distribution in bending.- 4.1.1 Bending about the x-axis only.- 4.1.2 Bending about the y-axis only.- 4.1.3 Generalized bending.- 4.1.4 Force resultants.- 4.1.5 Uncoupled problems.- 4.1.6 Coupled problems.- 4.2 Displacements of the beam.- 4.3 Second moments of area.- 4.3.1 Finding the centroid.- 4.3.2 The parallel axis theorem.- 4.3.3 Thin-walled sections.- 4.4 Further properties of second moments.- 4.4.1 Coordinate transformation.- 4.4.2 Mohr's circle of second moments.- 4.4.3 Solution of unsymmetrical bending problems in principal coordinates.- 4.4.4 Design estimates for the behaviour of unsymmetrical sections.- 4.4.5 Errors due to misalignment.- 4.5 Summary.- Problems.- 5 Non-linear and Elastic-Plastic Bending.- 5.1 Kinematics of bending.- 5.2 Elastic-plastic constitutive behaviour.- 5.2.1 Unloading and reloading.- 5.2.2 Yield during reversed loading.- 5.2.3 Elastic-perfectly plastic material.- 5.3 Stress fields in non-linear and inelastic bending.- 5.3.1 Force and moment resultants.- 5.4 Pure bending about an axis of symmetry.- 5.4.1 Symmetric problems for elastic-perfectly plastic materials.- 5.4.2 Fully plastic moment and shape factor.- 5.5 Bending of a symmetric section about an orthogonal axis.- 5.5.1 The fully plastic case.- 5.5.2 Non-zero axial force.- 5.5.3 The partially plastic solution.- 5.6 Unsymmetrical plastic bending.- 5.7 Unloading, springback and residual stress.- 5.7.1 Springback and residual curvature.- 5.7.2 Reloading and shakedown…

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789400702943
    • Auflage 2nd ed. 2011
    • Sprache Englisch
    • Genre Maschinenbau
    • Lesemotiv Verstehen
    • Anzahl Seiten 618
    • Größe H235mm x B155mm
    • Jahr 2010
    • EAN 9789400702943
    • Format Fester Einband
    • ISBN 978-94-007-0294-3
    • Veröffentlichung 11.11.2010
    • Titel Intermediate Mechanics of Materials
    • Autor J. R. Barber
    • Untertitel Solid Mechanics and Its Applications 175
    • Gewicht 2340g
    • Herausgeber Springer-Verlag GmbH

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.