Kirszbraun Theorem
CHF 45.20
Auf Lager
SKU
NBO1FO46SIH
Geliefert zwischen Mi., 15.10.2025 und Do., 16.10.2025
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, specifically real analysis and functional analysis, the Kirszbraun theorem states that if U is a subset of some Hilbert space H1, and H2 is another Hilbert space, and f : U H2 is a Lipschitz-continuous map, then there is a Lipschitz-continuous map F: H1 H2 that extends f and has the same Lipschitz constant as f. Note that this result in particular applies to Euclidean spaces En and Em, and it was in this form that Kirszbraun originally formulated and proved the theorem. The version for Hilbert spaces can for example be found in (Schwartz 1969)
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131275067
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131275067
- Format Fachbuch
- Titel Kirszbraun Theorem
- Herausgeber Betascript Publishing
- Anzahl Seiten 104
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung