Polyhedral and Algebraic Methods in Computational Geometry
Details
This book provides a mathematical introduction into algorithmic geometry with applications to robotics and computer graphics, from classical problems to Gröbner bases. Illustrated by applications in computer graphics, curve reconstruction and robotics.
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry.
The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations.
The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics.
Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established.
Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
Provides a mathematical introduction to linear and non-linear (i.e. algebraic) computational geometry Applies the theory to computer graphics, curve reconstruction and robotics Establishes interconnections with other disciplines such as algebraic geometry, optimization and numerical mathematics Includes supplementary material: sn.pub/extras
Klappentext
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry.
The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations.
The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics.
Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established.
Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.*
Inhalt
Introduction and Overview.- Geometric Fundamentals.- Polytopes and Polyhedra.- Linear Programming.- Computation of Convex Hulls.- Voronoi Diagrams.- Delone Triangulations.- Algebraic and Geometric Foundations.- Gröbner Bases and Buchberger's Algorithm.- Solving Systems of Polynomial Equations Using Gröbner Bases.- Reconstruction of Curves.- Plücker Coordinates and Lines in Space.- Applications of Non-Linear Computational Geometry.- Algebraic Structures.- Separation Theorems.- Algorithms and Complexity.- Software.- Notation.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Gewicht 454g
- Untertitel Universitext
- Autor Thorsten Theobald , Michael Joswig
- Titel Polyhedral and Algebraic Methods in Computational Geometry
- Veröffentlichung 04.01.2013
- ISBN 1447148169
- Format Kartonierter Einband
- EAN 9781447148166
- Jahr 2013
- Größe H235mm x B155mm x T14mm
- Herausgeber Springer London
- Anzahl Seiten 264
- Lesemotiv Verstehen
- Auflage 2013
- GTIN 09781447148166