Polynomial Rings and Affine Algebraic Geometry

CHF 247.80
Auf Lager
SKU
SAIQ4F5KRTI
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry andStein manifolds.


Gathers in a single volume the latest research conducted by an international group of experts on affine and projective algebraic geometry Covers topics like the Cancellation Problem, the Embedding Problem, the Dolgachev-Weisfeiler Conjecture, and more Offers a valuable source of information and inspiration for researchers and students pursuing new problems and research paths

Autorentext

Shigeru Kuroda is a Professor at Tokyo Metropolitan University, Japan. Holding a PhD (2003) from Tohoku University, Japan, his main research focuses are on affine algebraic geometry and polynomial ring theory.
**
Nobuharu Onoda** is a Professor at University of Fukui, Japan. He holds a PhD (1983) from Osaka University, Japan. His main research interests are in commutative algebra related to affine algebraic geometry.


Gene Freudenburg is a Professor at Western Michigan University, USA. He completed his PhD (1992) at Washington University, Saint Louis, USA. His chief research interests are in commutative algebra and affine algebraic geometry. He authored the Springer book "Algebraic Theory of Locally Nilpotent Derivations" (978-3-662-55348-0), now in its second edition.


Inhalt
Ciliberto, C. and Zaidenberg, M: On Fano schemes of complete intersections.- Daigle, D.: Locally nilpotent sets of derivations.- DeBondt, M. and Watanabe, J: On the theory of Gordan-Noether on homogeneous forms with zero Hessian.- Dubouloz, A. and Petitijean, C: Rational real algebraic models of compact dierential surfaces with circle actions.- Freudenburg, G.: The super-rank of a locally nilpotent derivation of a polynomial ring.- Gurjar, R., Masuda, K., and Miyanishi, M: Ane space brations.- Gurjar, R.: A graded domain is determined at its vertex: Applications to invariant theory.- Kojima, H.: Singularities of normal log canonical del Pezzo surfaces of rank one.- Moser-Jauslin, L.: O2(C)-vector bundles and equivariant real circle actions.- Nagamine, T.: On some sucient conditions for polynomials to be closed polynomials over Domains.- Popov, V.: Variations on the theme of Zariski's Cancellation Problem.- Takeda, Y.: Tango structures on curves in characteristic 2.- Tanimoto, R.: Exponential matrices of size ve-by-ve.- Van den Essen, A.: Mathieu-Zhao Spaces and the Jacobian Conjecture.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 658g
    • Untertitel PRAAG 2018, Tokyo, Japan, February 1216
    • Titel Polynomial Rings and Affine Algebraic Geometry
    • Veröffentlichung 28.03.2020
    • ISBN 303042135X
    • Format Fester Einband
    • EAN 9783030421359
    • Jahr 2020
    • Größe H241mm x B160mm x T24mm
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 328
    • Lesemotiv Verstehen
    • Editor Shigeru Kuroda, Gene Freudenburg, Nobuharu Onoda
    • Auflage 1st edition 2020
    • GTIN 09783030421359

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.