Possibility Theory for the Design of Information Fusion Systems

CHF 196.75
Auf Lager
SKU
D6GIPD3E9NO
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 15.10.2025 und Do., 16.10.2025

Details

This practical guidebook describes the basic concepts, the mathematical developments, and the engineering methodologies for exploiting possibility theory for the computer-based design of an information fusion system where the goal is decision support for industries in smart ICT (information and communications technologies). This exploitation of possibility theory improves upon probability theory, complements Dempster-Shafer theory, and fills an important gap in this era of Big Data and Internet of Things.
The book discusses fundamental possibilistic concepts: distribution, necessity measure, possibility measure, joint distribution, conditioning, distances, similarity measures, possibilistic decisions, fuzzy sets, fuzzy measures and integrals, and finally, the interrelated theories of uncertainty..uncertainty. These topics form an essential tour of the mathematical tools needed for the latter chapters of the book. These chapters present applications related to decision-making and pattern recognition schemes, and finally, a concluding chapter on the use of possibility theory in the overall challenging design of an information fusion system. This book will appeal to researchers and professionals in the field of information fusion and analytics, information and knowledge processing, smart ICT, and decision support systems.




Contains an integral view of possibility theory and its links to other uncertainty theories Includes possibilistic concepts for analytics and information fusion Contains applications to pattern recognition and other related fusion systems

Autorentext
Basel Solaiman is a professor at IMT-Atlantique (École nationale supérieure Mines-Télécom Atlantique Bretagne-Pays de la Loire), France, where he heads the Department of Image and Information Processing. His research activities range from medical and underwater imaging, remote sensing, and knowledge mining. He holds a Ph.D. degree from Université de Rennes-I, France.

Éloi Bossé, is a researcher on decision support, fusion of information and analytics technologies (FIAT). He possesses a vast research experience in applying them to Defense and Security related problems. He is currently president of Expertise Parafuse Inc., a consultant firm on FIAT, associate researcher at IMT-Atlantique, France. He holds a Ph.D. degree from Université Laval, Québec City, Canada.



Inhalt
Chapter1: Introduction to possibility theory.- Chapter2: Fundamental possibilistic concepts.- Chapter3: Joint Possibility Distributions and Conditioning.- Chapter4: Possibilistic Similarity Measures.- Chapter5: The interrelated uncertainty modeling theories.- Chapter6: Possibility integral.- Chapter7: Fusion operators and decision-making criteria in the framework of possibility theory.- Chapter8: Possibilistic concepts applied to soft pattern classification.- Chapter9: The use of possibility theory in the design of information fusion systems.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030328559
    • Sprache Englisch
    • Auflage 1st edition 2019
    • Größe H235mm x B155mm x T17mm
    • Jahr 2020
    • EAN 9783030328559
    • Format Kartonierter Einband
    • ISBN 3030328554
    • Veröffentlichung 27.12.2020
    • Titel Possibility Theory for the Design of Information Fusion Systems
    • Autor Éloi Bossé , Basel Solaiman
    • Untertitel Information Fusion and Data Science
    • Gewicht 458g
    • Herausgeber Springer Nature Switzerland
    • Anzahl Seiten 300
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.