q-analog
CHF 43.00
Auf Lager
SKU
P0NAA63R0TC
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, in the area of combinatorics and special functions, a q-analog is, roughly speaking, a theorem or identity in the variable q that gives back a known result in the limit, as q 1 (from inside the complex unit circle in most situations). The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.q-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamical systems. The relationship to fractals and dynamical systems results from the fact that many fractal patterns have the symmetries of Fuchsian groups in general (see, for example Indra's pearls and the Apollonian gasket) and the modular group in particular. The connection passes through hyperbolic geometry and ergodic theory, where the elliptic integrals and modular forms play a prominent role; the q-series themselves are closely related to elliptic integrals.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130316365
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H4mm x B220mm x T150mm
- Jahr 2010
- EAN 9786130316365
- Format Kartonierter Einband
- ISBN 978-613-0-31636-5
- Titel q-analog
- Untertitel Mathematics, Combinatorics, Special Functions, Limit, Unit circle, Basic Hypergeometric Series, Fractal, Entropy
- Gewicht 128g
- Herausgeber Betascript Publishers
- Anzahl Seiten 84
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung