Reinforcement Learning Aided Performance Optimization of Feedback Control Systems

CHF 90.50
Auf Lager
SKU
I3MDA91EMCG
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 16.10.2025 und Fr., 17.10.2025

Details

Changsheng Hua proposes two approaches, an input/output recovery approach and a performance index-based approach for robustness and performance optimization of feedback control systems. For their data-driven implementation in deterministic and stochastic systems, the author develops Q-learning and natural actor-critic (NAC) methods, respectively. Their effectiveness has been demonstrated by an experimental study on a brushless direct current motor test rig.

The author: Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.



Autorentext

Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.


Inhalt
Introduction.- The basics of feedback control systems.- Reinforcement learning and feedback control.- Q-learning aided performance optimization of deterministic systems.- NAC aided performance optimization of stochastic systems.- Conclusion and future work.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783658330330
    • Auflage 1st edition 2021
    • Sprache Englisch
    • Größe H210mm x B148mm x T9mm
    • Jahr 2021
    • EAN 9783658330330
    • Format Kartonierter Einband
    • ISBN 3658330333
    • Veröffentlichung 04.03.2021
    • Titel Reinforcement Learning Aided Performance Optimization of Feedback Control Systems
    • Autor Changsheng Hua
    • Gewicht 202g
    • Herausgeber Springer Fachmedien Wiesbaden
    • Anzahl Seiten 148
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.