Rotation Group

CHF 43.05
Auf Lager
SKU
2GL9F3F6EJ0
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Mi., 22.10.2025 und Do., 23.10.2025

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mechanics and geometry, the rotation group is the group of all rotations about the origin of three-dimensional Euclidean space R3 under the operation of composition. By definition, a rotation about the origin is a linear transformation that preserves length of vectors (it is an isometry) and preserves orientation (i.e. handedness) of space. A length-preserving transformation which reverses orientation is called an improper rotation. Every improper rotation of three-dimensional Euclidean space is a reflection in a plane through the origin.

Klappentext

High Quality Content by WIKIPEDIA articles! In mechanics and geometry, the rotation group is the group of all rotations about the origin of three-dimensional Euclidean space R3 under the operation of composition. By definition, a rotation about the origin is a linear transformation that preserves length of vectors (it is an isometry) and preserves orientation (i.e. handedness) of space. A length-preserving transformation which reverses orientation is called an improper rotation. Every improper rotation of three-dimensional Euclidean space is a reflection in a plane through the origin.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130317126
    • Genre Technik
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Anzahl Seiten 100
    • Herausgeber Betascript Publishers
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9786130317126
    • Format Fachbuch
    • ISBN 978-613-0-31712-6
    • Titel Rotation Group
    • Untertitel Classical Mechanics, Geometry, Improper Rotation, Linear Map, Identity Function, Lie Group, Orthogonal Matrix, Rotation Matrix, Quaternions and Spatial Rotation

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.