Schmidt Decomposition
CHF 39.80
Auf Lager
SKU
NHLUSOPN32G
Geliefert zwischen Mi., 15.10.2025 und Do., 16.10.2025
Details
High Quality Content by WIKIPEDIA articles! Let H1 and H2 be Hilbert spaces of dimensions n and m respectively. Assume n geq m. For any vector v in the tensor product H1 otimes H2, there exist orthonormal sets { u1, ldots, un } subset H1 and { v1, ldots, vm } subset H2 such that v = sum{i =1} ^m alpha i ui otimes vi, where the scalars i are non-negative and, as a set, uniquely determined by v. [edit] Proof The Schmidt decomposition is essentially a restatement of the singular value decomposition in a different context. Fix orthonormal bases { e1, ldots, en } subset H1 and { f1, ldots, fm } subset H2. We can identify an elementary tensor ei otimes fj with the matrix ei fj ^T, where fj ^T is the transpose of fj. A general element of the tensor product v = sum {1 leq i leq n, 1 leq j leq m} beta {ij} ei otimes fj can then be viewed as the n × m matrix ; Mv = (beta{ij}){ij} .
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131159817
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131159817
- Format Fachbuch
- Titel Schmidt Decomposition
- Herausgeber Betascript Publishing
- Anzahl Seiten 96
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung