Search and Optimization by Metaheuristics

CHF 84.80
Auf Lager
SKU
TD2QV0356AE
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 23.10.2025 und Fr., 24.10.2025

Details

This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones.
An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics.
Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.

Offers a comprehensive and state-of-the-art introduction to nature-inspired metaheuristics Includes detailed, implementable algorithmic flowcharts for the most popular algorithms Discusses over 100 different types of nature-inspired search and optimization methods Will allow students to discover the newest trends in metaheuristics and optimization Includes supplementary material: sn.pub/extras

Autorentext
Ke-Lin Du, PhD, is Affiliate Associate Professor at Concordia University, Montreal, Quebec, Canada, and Founder and CEO of Xonlink Inc, Ningbo, China.
M.N.S. Swamy, PhD, is Research Professor and Tier I Concordia Research Chair in the Department of Electrical and Computer Engineering at Concordia University, Montreal, Quebec, Canada.

Inhalt
Preface.- Introduction.- Simulated Annealing.- Optimization by Recurrent Neural Networks.- Genetic Algorithms and Genetic Programming.- Evolutionary Strategies.- Differential Evolution.- Estimation of Distribution Algorithms.- Mimetic Algorithms.- Topics in EAs.- Particle Swarm Optimization.- Artificial Immune Systems.- Ant Colony Optimization.- Tabu Search and Scatter Search.- Bee Metaheuristics.- Harmony Search.- Biomolecular Computing.- Quantum Computing.- Other Heuristics-Inspired Optimization Methods.- Dynamic, Multimodal, and Constraint-Satisfaction Optimizations.- Multiobjective Optimization.- Appendix 1: Discrete Benchmark Functions.- Appendix 2: Test Functions.- Index.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer International Publishing
    • Gewicht 686g
    • Untertitel Techniques and Algorithms Inspired by Nature
    • Autor M. N. S. Swamy , Ke-Lin Du
    • Titel Search and Optimization by Metaheuristics
    • Veröffentlichung 31.05.2018
    • ISBN 331982290X
    • Format Kartonierter Einband
    • EAN 9783319822907
    • Jahr 2018
    • Größe H235mm x B155mm x T25mm
    • Anzahl Seiten 456
    • Lesemotiv Verstehen
    • Auflage Softcover reprint of the original 1st edition 2016
    • GTIN 09783319822907

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.