Semistable Abelian Variety

CHF 43.00
Auf Lager
SKU
K6CONKE04NO
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025

Details

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! In algebraic geometry, a semistable abelian variety is an abelian variety defined over a global or local field, which is characterized by how it reduces at the primes of the field. For an Abelian variety A defined over a field F with ring of integers R, consider the Néron model of A, which is a 'best possible' model of A defined over R. A semistable elliptic curve may be described more concretely as an elliptic curve that has bad reduction only of multiplicative type. Suppose E is an elliptic curve defined over the rational number field Q. It is known that there is a finite, non-empty set S of prime numbers p for which E has bad reduction modulo p. The latter means that the curve Ep obtained by reduction of E to the prime field with p elements has a singular point. Roughly speaking, the condition of multiplicative reduction amounts to saying that the singular point is a double point, rather than a cusp. Deciding whether this condition holds is effectively computable according to Tate's algorithm.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131160080
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131160080
    • Format Fachbuch
    • Titel Semistable Abelian Variety
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.