Sensory and Metabolic Control of Energy Balance

CHF 218.65
Auf Lager
SKU
3DEK6CH0028
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

Covering the latest research, this book looks at the sensory-metabolic functions of the olfactory bulb and the brain-gut endocrine axis. It also examines mechanisms regulating lipid storage and metabolism and covers the characterization of obesity genes.


During the last two decades, the prevalence of obesity has dramatically increased in western and westernized societies. Its devastating health consequences include hypertension, cardiovascular diseases, or diabetes and make obesity the second leading cause of unnecessary deaths in the USA. As a consequence, obesity has a strong negative impact on the public health care systems. Recently emerging scienti?c insight has helped understanding obesity as a complex chronic disease with multiple causes. A multileveled geneenvironment interaction appears to involve a substantial number of susceptibility genes, as well as associations with low physical activity levels and intake of high-calorie, low-cost, foods. Unfor- nately, therapeutic options to prevent or cure this disease are extremely limited, posing an extraordinary challenge for today's biomedical research community. Obesity results from imbalanced energy metabolism leading to lipid storage. Only detailed understanding of the multiple molecular underpinnings of energy metabolism can provide the basis for future therapeutic options. Numerous aspects of obesity are currently studied, including the essential role of neural and endocrine control circuits, adaptive responses of catabolic and anabolic pathways, metabolic fuel sensors, regulation of appetite and satiation, sensory information processing, transcriptional control of metabolic processes, and the endocrine role of adipose tissue. These studies are predominantly fuelled by basic research on mammalian models or clinical studies, but these ?ndings were paralleled by important insights, which have emerged from studying invertebrate models.

Up-to-date account of the scientific progress made in the understanding of molecular mechanisms regulating energy metabolism Special emphasis on obesity Written by experts in the field Includes supplementary material: sn.pub/extras

Klappentext
The prevalence of obesity has dramatically increased in western and westernized societies, making the disease the second leading cause of unnecessary deaths in the US. Obesity results from imbalanced metabolic regulation leading to excessive lipid storage. As important novel entities in metabolic regulation, taste receptors and their cells are critical elements that adapt the gustatory system to metabolic signals and vice versa. The role of taste receptor genes in gastrointestinal tissues, as well as their dynamic regulation in gustatory and non-gustatory tissues in response to metabolic cues, has become the focus of an entirely new and rapidly developing research field with impacts on fuel sensing, metabolic control, and ingestive behavior. This book reflects the recent scientific progress in the field of fuel sensing in the mouth, GI tract, and brain and examines the olfactory bulb as a potential metabolic sensor and the brain-gut endocrine axis. It also touches on relevant novel molecular and cellular mechanisms regulating lipid storage and metabolism and covers the identification and functional characterization of obesity genes. Lastly, it illustrates the use of insect models to study relevant problems of energy homeostasis.

Inhalt
The Genetic Basis of Obesity and Type 2 Diabetes: Lessons from the New Zealand Obese Mouse, a Polygenic Model of the Metabolic Syndrome.- Regulation of Nutrient Metabolism and Inflammation.- Lipid Storage in Large and Small Rat Adipocytes by Vesicle-Associated Glycosylphosphatidylinositol-Anchored Proteins.- Autophagy and Regulation of Lipid Metabolism.- Gene Co-Expression Modules and Type 2 Diabetes.- Role of Zinc Finger Transcription Factor Zfp69 in Body Fat Storage and Diabetes Susceptibility of Mice.- Metabolic Sensing in Brain Dopamine Systems.- Oral and Extraoral Bitter Taste Receptors.- Reciprocal Modulation of Sweet Taste by Leptin and Endocannabinoids.- Roles of Hormones in Taste Signaling.- Endocannabinoid Modulation in the Olfactory Epithelium.- The Olfactory Bulb: A Metabolic Sensor of Brain Insulin and Glucose Concentrations via a Voltage-Gated Potassium Channel.- Energy Homeostasis Regulation in Drosophila: A Lipocentric Perspective.- Towards Understanding Regulation of Energy Homeostasis by Ceramide Synthases.- Role of the Gut Peptide Glucose-Induced Insulinomimetic Peptide in Energy Balance.- AdipocyteBrain: Crosstalk.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 534g
    • Untertitel Results and Problems in Cell Differentiation 52
    • Titel Sensory and Metabolic Control of Energy Balance
    • Veröffentlichung 24.09.2010
    • ISBN 364214425X
    • Format Fester Einband
    • EAN 9783642144257
    • Jahr 2010
    • Größe H241mm x B160mm x T18mm
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 216
    • Lesemotiv Verstehen
    • Editor Wolfgang Meyerhof, Hans-Georg Joost, Ulrike Beisiegel
    • Auflage 2010
    • GTIN 09783642144257

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.