Similarity Search in Medical Data

CHF 100.75
Auf Lager
SKU
1UGOC03BMOR
Stock 1 Verfügbar
Geliefert zwischen Di., 23.09.2025 und Mi., 24.09.2025

Details

At present, an adequate therapy planning of newly detected brain tumors needs invasive biopsy due to the fact that prognosis and treatment, both vary strongly for different tumor grades. To assist neuroradiologist experts during the differentiation between tumors of different malignancy a novel, efficient similarity search technique for uncertain data in combination with a technique for parameter-free outlier detection is proposed. Previous work is limited to axis-parallel Gaussian distributions, hence, correlations between different features are not considered in these similarity searches. In this work a similarity search technique for general Gaussian Mixture Models (GMMs) without independence assumption is presented. The actual components of a GMM are approximated in a conservative but tight way. The conservativity of the approach leads to a filter-refinement architecture, which guarantees no false dismissals and the tightness of the approximations causes good filter selectivity. Promising results for advancing the differentiation between brain tumors of different grades could be obtained by applying the approach to four-dimensional Magnetic Resonance Images of glioma patients.

Autorentext

Katrin Haegler, Dr.: Studies of Bioinformatics at Ludwig-Maximilians (LMU) University and Technical University Munich. PhD studentship in Computer Sience at the LMU Munich. Core software engineer at SEP AG, Weyarn, Germany.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Gewicht 262g
    • Untertitel Automatic differentiation between low- and high-grade brain tumors
    • Autor Katrin Haegler
    • Titel Similarity Search in Medical Data
    • Veröffentlichung 02.03.2012
    • ISBN 3838131711
    • Format Kartonierter Einband
    • EAN 9783838131719
    • Jahr 2012
    • Größe H220mm x B150mm x T10mm
    • Herausgeber Südwestdeutscher Verlag für Hochschulschriften
    • Anzahl Seiten 164
    • Auflage Aufl.
    • GTIN 09783838131719

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.