Stability Theorems in Geometry and Analysis

CHF 187.70
Auf Lager
SKU
4B9IP3JK8DL
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 15.10.2025 und Do., 16.10.2025

Details

  1. Preliminaries, Notation, and Terminology n n 1.1. Sets and functions in lR. Throughout the book, lR. stands for the n-dimensional arithmetic space of points x = (X},X2,'" ,xn)j Ixl is the length of n n a vector x E lR. and (x, y) is the scalar product of vectors x and y in lR. , i.e., for x = (Xl, X2, . , xn) and y = (y}, Y2,··., Yn), Ixl = Jx~ + x~ + ... + x~, (x, y) = XIYl + X2Y2 + ... + XnYn. n Given arbitrary points a and b in lR. , we denote by [a, b] the segment that joins n them, i.e. the collection of points x E lR. of the form x = .a + I'b, where. + I' = 1 and . ~ 0, I' ~ O. n We denote by ei, i = 1,2, ... ,n, the vector in lR. whose ith coordinate is equal to 1 and the others vanish. The vectors el, e2, ... ,en form a basis for the space n lR. , which is called canonical. If P( x) is some proposition in a variable x and A is a set, then {x E A I P(x)} denotes the collection of all the elements of A for which the proposition P( x) is true.

    Inhalt

  2. Introduction.- 2. Möbius Transformations.- 3. Integral Representations and Estimates for Differentiable Functions.- 4. Stability in Liouville's Theorem on Conformal Mappings in Space.- 5. Stability of Isometric Transformations of the Space ?n.- 6. Stability in Darboux's Theorem.- 7. Differential Properties of Mappings with Bounded Distortion and Conformal Mappings of Riemannian Spaces.- References.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789048144679
    • Sprache Englisch
    • Größe H235mm x B155mm x T23mm
    • Jahr 2010
    • EAN 9789048144679
    • Format Kartonierter Einband
    • ISBN 9048144671
    • Veröffentlichung 15.12.2010
    • Titel Stability Theorems in Geometry and Analysis
    • Autor Yu. G. Reshetnyak
    • Untertitel Mathematics and Its Applications 304
    • Gewicht 616g
    • Herausgeber Springer
    • Anzahl Seiten 408
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.