SURFACE ROUGHNESS PREDICTION OF AL ALLOY USING ANN IN CNC TURNING
Details
Machining of advance aerospace materials like alloys of aluminum has posed a lot of challenges with the existing cutting tools higher the metal feed cutting rate lower is the surface finish and lower is metal feed cutting rate better is the surface finish. Also surface finish has played a prominent role in the machining of materials as it determines the number of steps required for process of aluminum alloy from the initial stage i.e. raw material stage to finished product. The experimental investigation was conducted by varying different operating parameters like spindle speed, feed rate and depth of cut. The obtained results were taken as inputs and by using Artificial Neural Network to obtain optimized solution of different conflicting parameters in terms of higher feed rate, maximum depth of cut and higher spindle speed accompanied by best surface finish.
Autorentext
El Dr. D.R. Srinivasan trabaja actualmente como profesor asistente en el Departamento de Ingeniería Mecánica de la Facultad de Ingeniería de JNTUA, Anantapur. Tiene 10 años de experiencia en la industria manufacturera y 17 años de experiencia en el campo de la enseñanza. Ha publicado más de 15 artículos técnicos en revistas internacionales miembros de IEI, ASME
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786203582741
- Genre Mechanical Engineering
- Sprache Englisch
- Anzahl Seiten 64
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 113g
- Größe H220mm x B150mm x T4mm
- Jahr 2021
- EAN 9786203582741
- Format Kartonierter Einband
- ISBN 6203582743
- Veröffentlichung 30.03.2021
- Titel SURFACE ROUGHNESS PREDICTION OF AL ALLOY USING ANN IN CNC TURNING
- Autor D. R. Srinivasan , S. Rajendraprasad
- Untertitel Using Ann in CNC Turning to Predict Surface Roughness of an Al Alloy RDE-40 and H-15