Uniform Convergence (Combinatorics)
CHF 41.90
Auf Lager
SKU
TO2FA1LGBBR
Geliefert zwischen Mo., 13.10.2025 und Di., 14.10.2025
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. For a class of predicates H,! defined on a set X,! and a set of samples x=(x{1},x{2},dots,x{m}),!, where x{i}in X,!, the empirical frequency of hin H,! on x,! is widehat{Q{x}}(h)=frac{1}{m} {i:1leq ileq m,h(x{i})=1} ,!. The Uniform Convergence Theorem states, roughly,that if H,! is "simple" and we draw samples independently (with replacement) from X,! according to a distribution P,!, then with high probability all the empirical frequency will be close to its expectation, where the expectation is given by Q_{P}(h)=P{yin X:h(y)=1},!. Here "simple" means that the Vapnik-Chernovenkis dimension of the class H,! is small relative to the size of the sample.In other words, a sufficiently simple collection of functions behaves roughly the same on a small random sample as it does on the distribution as a whole.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131374685
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131374685
- Titel Uniform Convergence (Combinatorics)
- Herausgeber Betascript Publishing
- Anzahl Seiten 80
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung