Wave Propagation in Viscoelastic and Poroelastic Continua

CHF 127.85
Auf Lager
SKU
PV7QKT3U7CL
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 14.10.2025 und Mi., 15.10.2025

Details

Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.

A novel numerical approach to a class of problems with high theoretical and practical interest Particularly interesting for researchers working on the boundary element method and the mechanics of porous media Includes supplementary material: sn.pub/extras

Klappentext
In this book, a numerical method to treat wave propagation problems in poroelastic and viscoelastic media is developed and evaluated. The method of choice is the Boundary Element Method (BEM) since this method implicitly fulfills the Sommerfeld radiation condition. The crucial point in any time-dependent BEM formulation finding time-dependent fundamental solutions is overcome employing the Convolution Quadrature Method. This quadrature rule makes it possible to establish a boundary element time-stepping procedure based on the known Laplace domain fundamental solutions for viscoelastic and poroelastic continua. Using this method, e.g., tremors produced by earthquakes or machines can be pre-calculated and subsequent buildings prevented from such disturbances.

Inhalt

  1. Introduction.- 2. Convolution quadrature method.- 2.1 Basic theory of the convolution quadrature method.- 2.2 Numerical tests.- 3. Viscoelastically supported Euler-Bernoulli beam.- 3.1 Integral equation for a beam resting on viscoelastic foundation.- 3.2 Numerical example.- 4. Time domain boundary element formulation.- 4.1 Integral equation for elastodynamics.- 4.2 Boundary element formulation for elastodynamics.- 4.3 Validation of proposed method: Wave propagation in a rod.- 5. Viscoelastodynamic boundary element formulation.- 5.1 Viscoelastic constitutive equation.- 5.2 Boundary integral equation.- 5.3 Boundary element formulation.- 5.4 Validation of the method and parameter study.- 6. Poroelastodynamic boundary element formulation.- 6.1 Biot's theory of poroelasticity.- 6.2 Fundamental solutions.- 6.3 Poroelastic Boundary Integral Formulation.- 6.4 Numerical studies.- 7. Wave propagation.- 7.1 Wave propagation in poroelastic one-dimensional column.- 7.2 Waves in half space.- 8. Conclusions Applications.- 8.1 Summary.- 8.2 Outlook on further applications.- A. Mathematic preliminaries.- A.1 Distributions or generalized functions.- A.2 Convolution integrals.- A.3 Laplace transform.- A.4 Linear multistep method.- B. BEM details.- B.1 Fundamental solutions.- B.1.1 Visco- and elastodynamic fundamental solutions.- B.1.2 Poroelastodynamic fundamental solutions.- B.2 Classical time domain BE formulation.- Notation Index.- References.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642074905
    • Auflage Softcover reprint of hardcover 1st edition 2001
    • Sprache Englisch
    • Genre Maschinenbau
    • Lesemotiv Verstehen
    • Anzahl Seiten 184
    • Größe H235mm x B155mm x T11mm
    • Jahr 2010
    • EAN 9783642074905
    • Format Kartonierter Einband
    • ISBN 3642074901
    • Veröffentlichung 03.12.2010
    • Titel Wave Propagation in Viscoelastic and Poroelastic Continua
    • Autor Martin Schanz
    • Untertitel A Boundary Element Approach
    • Gewicht 289g
    • Herausgeber Springer Berlin Heidelberg

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.