Well-order

CHF 37.40
Auf Lager
SKU
NC8NON9K9M7
Stock 1 Verfügbar
Geliefert zwischen Di., 20.01.2026 und Mi., 21.01.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online.In mathematics, a well-order relation (or well-ordering) on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering. Equivalently, a well-ordering is a well-founded total order. The set S together with the well-order relation is then called a well-ordered set. Every element s, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than s. Every subset which has an upper bound has a least upper bound. There may be elements (besides the least element) which have no predecessor. If a set is well-ordered, the proof technique of transfinite induction can be used to prove that a given statement is true for all elements of the set. The observation that the natural numbers are well-ordered by the usual less-than relation is commonly called the well-ordering principle. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well-ordered. The well-ordering theorem is also equivalent to the Kuratowski-Zorn lemma.

Klappentext

In mathematics, a well-order relation (or well-ordering) on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering. Equivalently, a well-ordering is a well-founded total order. The set S together with the well-order relation is then called a well-ordered set. Every element s, except a possible greatest element, has a unique successor (next element), namely the least element of the subset of all elements greater than s. Every subset which has an upper bound has a least upper bound. There may be elements (besides the least element) which have no predecessor. If a set is well-ordered, the proof technique of transfinite induction can be used to prove that a given statement is true for all elements of the set. The observation that the natural numbers are well-ordered by the usual less-than relation is commonly called the well-ordering principle. The well-ordering theorem, which is equivalent to the axiom of choice, states that every set can be well-ordered. The well-ordering theorem is also equivalent to the Kuratowski-Zorn lemma.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130310172
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B220mm
    • Jahr 2009
    • EAN 9786130310172
    • Format Kartonierter Einband
    • ISBN 978-613-0-31017-2
    • Titel Well-order
    • Untertitel Mathematics, Total Order, Empty Set, Subset, Greatest Element, Well-founded Relation, Supremum, Transfinite Induction, Well-ordering Principle, Well-ordering Theorem
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 68
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470