Rough Set and Statistical Approach to Knowledge Discovery

CHF 98.05
Auf Lager
SKU
TO57KJ7TTFG
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 06.11.2025 und Fr., 07.11.2025

Details

Large amount of data have been collected routinely in the course of day-to-day work in different fields. Typically, the datasets constantly grow accumulating a large number of features, which are not equally important in decision-making. Rough set theory (RST)recently becomes very popular in dimensionality reduction and feature selection of large datasets. The RST approach to feature selection is used to determine a subset of features (or attributes) called reduct which can predict the decision concepts. In reality, there are multiple reducts in a given information system used for developing classifiers, amongst which the best performer is chosen as the final solution to the problem. Selecting a reduct with good performance is time expensive, as there might be many reducts of a given dataset. Therefore, obtaining a best performer classifier is not practical rather ensemble of different classifiers may lead to better classification accuracy. However, combining large number of classifiers increases complexity of the system. The work trades off between these two approaches and creates an efficient ensemble classifier.

Autorentext

Authors (PhD) are faculties of Computer Science and Technology Department of Bengal Engineering and Science University (BESU), Shibpur, Howrah, India. Their common research area of interest include pattern recognition, data mining and Bioinformatics.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639347661
    • Sprache Englisch
    • Größe H220mm x B150mm x T12mm
    • Jahr 2011
    • EAN 9783639347661
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-34766-1
    • Titel Rough Set and Statistical Approach to Knowledge Discovery
    • Autor Asit Kumar Das , Jaya Sil
    • Untertitel Dimension Reduction, Clustering and Classification Techniques
    • Gewicht 320g
    • Herausgeber VDM Verlag
    • Anzahl Seiten 204
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470