Swarm Intelligent Systems

CHF 201.95
Auf Lager
SKU
L928QGHL2NN
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

Swarm intelligence is an innovative computational way to solving hard pr- lems. This discipline is inspired by the behavior of social insects such as ?sh schools and bird ?ocks and colonies of ants, termites, bees and wasps. In g- eral, this is done by mimicking the behavior of the biological creatures within their swarms and colonies. Particle swarm optimization, also commonly known as PSO, mimics the behaviorofaswarmofinsectsoraschoolof?sh.Ifoneoftheparticlediscovers a good path to food the rest of the swarm will be able to follow instantly even if they are far away in the swarm. Swarm behavior is modeled by particles in multidimensionalspacethathavetwocharacteristics:apositionandavelocity. Theseparticleswanderaroundthehyperspaceandrememberthebestposition that they have discovered. They communicate good positions to each other and adjust their own position and velocity based on these good positions. The ant colony optimization, commonly known as ACO, is a probabilistic technique for solving computational hard problems which can be reduced to ?ndingoptimalpaths.ACOisinspiredbythebehaviorofantsin?ndingshort paths from the colony nest to the food place. Ants have small brains and bad vision yet they use great search strategy. Initially, real ants wander randomly to ?nd food. They return to their colony while laying down pheromone trails. If other ants ?nd such a path, they are likely to follow the trail with some pheromone and deposit more pheromone if they eventually ?nd food.

Recent advances in swarm intelligence and cooperative behaviour

Klappentext

This volume offers a wide spectrum of sample works developed in leading research throughout the world about innovative methodologies of swarm intelligence and foundations of engineering swarm intelligent systems as well as applications and interesting experiences using the particle swarm optimisation.

Swarm intelligence is an innovative computational way to solve hard problems which is at the heart of computational intelligence. In particular, particle swarm optimization, also commonly known as PSO, mimics the behavior of a swarm of insects or a school of fish. If one of the particle discovers a good path to food the rest of the swarm will be able to follow instantly even if they are far away in the swarm. Swarm behavior is modeled by particles in multidimensional space that have two characteristics: a position and a velocity. These particles wander around the hyperspace and remember the best position that they have discovered. They communicate good positions to each other and adjust their own position and velocity based on these good positions.

Instead of designing complex and centralized systems, nowadays designers rather prefer to work with many small and autonomous agents. Each agent may prescribe to a global strategy. An agent acts on the simplest of rules. The many agents co-operating within the system can solve very complex problems with a minimal design effort. In General, multi-agent systems that use some swarm intelligence are said to be swarm intelligent systems. They are mostly used as search engines and optimization tools. The book should be useful both for beginners and experienced researchers in the field of computational intelligence.



Inhalt
Methodologies Based on Particle Swarm Intelligence.- Swarm Intelligence: Foundations, Perspectives and Applications.- Waves of Swarm Particles (WoSP).- Grammatical Swarm: A Variable-Length Particle Swarm Algorithm.- SWARMs of Self-Organizing Polymorphic Agents.- Experiences Using Particle Swarm Intelligence.- Swarm Intelligence Searchers, Cleaners and Hunters.- Ant Colony Optimisation for Fast Modular Exponentiation using the Sliding Window Method.- Particle Swarm for Fuzzy Models Identification.- A Matlab Implementation of Swarm Intelligence based Methodology for Identification of Optimized Fuzzy Models.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642070419
    • Auflage Softcover reprint of hardcover 1st edition 2006
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T12mm
    • Jahr 2010
    • EAN 9783642070419
    • Format Kartonierter Einband
    • ISBN 3642070418
    • Veröffentlichung 25.11.2010
    • Titel Swarm Intelligent Systems
    • Autor Luiza Macedo Mourelle , Nadia Nedjah
    • Untertitel Studies in Computational Intelligence 26
    • Gewicht 324g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 208

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.