A Comparative Analysis of LBP Variants for Image Tamper Detection

CHF 59.95
Auf Lager
SKU
V09CER776V0
Stock 1 Verfügbar
Geliefert zwischen Di., 20.01.2026 und Mi., 21.01.2026

Details

This thesis explores the use of Local Binary Patterns (LBP) and Convolutional Neural Networks (CNN) for detecting image tampering, an increasingly prevalent issue in today's digital landscape. Through a comparative analysis of four LBP variants using the CASIA-2.0 dataset, it combines LBP's texture descriptors with CNN to enhance accuracy and robustness. The methodology involves generating local texture descriptors with LBP and feeding them into a CNN architecture trained to classify images as tampered or authentic. Despite challenges like computational complexity, the research aims to contribute to a reliable tamper detection system applicable in various real-world scenarios. Notably, Uniform LBP demonstrates superior performance in both training/testing time, achieving accuracy and F1-score exceeding 97% in image tamper detection, validating the effectiveness of the approach.

Autorentext

Suresh, JRF at DRDO, working on a VR Training simulator development in Unity and C#. I have completed my masters in IT from UIET, PU-Chandigarh, India. I love Computer Science with a strong hold on DSA, C++, Python, C# and JavaScript. Exploring the unleashed power of ML/AI as an emerging domain.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786207487493
    • Genre Information Technology
    • Anzahl Seiten 80
    • Größe H220mm x B150mm
    • Jahr 2024
    • EAN 9786207487493
    • Format Kartonierter Einband
    • ISBN 978-620-7-48749-3
    • Titel A Comparative Analysis of LBP Variants for Image Tamper Detection
    • Autor Suresh Rao , Mandeep Kaur
    • Untertitel DE
    • Herausgeber LAP LAMBERT Academic Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470