Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
A Comparative Analysis of LBP Variants for Image Tamper Detection
Details
This thesis explores the use of Local Binary Patterns (LBP) and Convolutional Neural Networks (CNN) for detecting image tampering, an increasingly prevalent issue in today's digital landscape. Through a comparative analysis of four LBP variants using the CASIA-2.0 dataset, it combines LBP's texture descriptors with CNN to enhance accuracy and robustness. The methodology involves generating local texture descriptors with LBP and feeding them into a CNN architecture trained to classify images as tampered or authentic. Despite challenges like computational complexity, the research aims to contribute to a reliable tamper detection system applicable in various real-world scenarios. Notably, Uniform LBP demonstrates superior performance in both training/testing time, achieving accuracy and F1-score exceeding 97% in image tamper detection, validating the effectiveness of the approach.
Autorentext
Suresh, JRF at DRDO, working on a VR Training simulator development in Unity and C#. I have completed my masters in IT from UIET, PU-Chandigarh, India. I love Computer Science with a strong hold on DSA, C++, Python, C# and JavaScript. Exploring the unleashed power of ML/AI as an emerging domain.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786207487493
- Genre Information Technology
- Anzahl Seiten 80
- Größe H220mm x B150mm
- Jahr 2024
- EAN 9786207487493
- Format Kartonierter Einband
- ISBN 978-620-7-48749-3
- Titel A Comparative Analysis of LBP Variants for Image Tamper Detection
- Autor Suresh Rao , Mandeep Kaur
- Untertitel DE
- Herausgeber LAP LAMBERT Academic Publishing
- Sprache Englisch