Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
A RANDOM FOREST MODEL FOR BREAST CANCER CLASSIFICATION
Details
This book highlights on development and optimization of a Random Forest (RF) model to classify breast cancer as benign or malignant using the Wisconsin Breast Cancer Dataset. After preprocessing 569 samples (357 benign, 212 malignant), a default RF model achieved 95.61% accuracy. To improve results, hyperparameter tuning via Grid Search was applied, adjusting parameters such as number of trees (150), max depth (None), min samples split (2), min samples leaf (1), and random seed (123). The optimized RF model achieved 99.12% accuracy, precision, recall, and F1-score, outperforming other methods like SVM, XGBoost, and prior RF implementations. Results show reduced false negatives and no false positives, indicating high sensitivity and specificity. The work underscores the value of meticulous hyperparameter tuning in medical AI applications and suggests future integration with neural networks and hybrid models for enhanced performance in clinical breast cancer diagnosis.
Autorentext
Professor Ahmad Mohammed Gumel is a registered biotechnologist specializing in biocatalysis and bioprocess technology. A global research consultant and journal board member, he has 1,260+ citations, h-index 18, and i10-index 23, with memberships in leading biotech federations worldwide.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786208449407
- Sprache Englisch
- Genre Biology
- Größe H220mm x B150mm
- Jahr 2025
- EAN 9786208449407
- Format Kartonierter Einband
- ISBN 978-620-8-44940-7
- Titel A RANDOM FOREST MODEL FOR BREAST CANCER CLASSIFICATION
- Autor A M GUMEL , A N ADAM , I Z WAZIRI
- Untertitel BUILDING AND OPTIMIZATION OF RANDOM FOREST MODEL FOR CLASSIFICATION OF BREAST CANCER INTO BENIGN AND MALIGNANT.DE
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 52