Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
A Stability Technique for Evolution Partial Differential Equations
Details
This book introduces a new, state-of-the-art method for the study of asymptotic behavior of solutions for evolution equations. The underlying theory hinges on a new stability result, which is presented in detail; also included is a review of basic techniques---many original to the authors---for the solution of nonlinear diffusion equations. Subsequent chapters feature a self-contained analysis of specific equations whose solutions depend on the stability theorem; a variety of estimation techniques for solutions of semi- and quasilinear parabolic equations are provided as well.
With its carefully-constructed theorems, proofs, and references, the text is appropriate for students and researchers in physics and mathematics who have basic knowledge of PDEs and some prior acquaintance with evolution equations. Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear partial differential equations.
Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs Well-organized text with detailed index and bibliography, suitable as a course text or reference volume
Inhalt
Introduction: A Stability Approach and Nonlinear Models.- Stability Theorem: A Dynamical Systems Approach.- Nonlinear Heat Equations: Basic Models and Mathematical Techniques.- Equation of Superslow Diffusion.- Quasilinear Heat Equations with Absorption. The Critical Exponent.- Porous Medium Equation with Critical Strong Absorption.- The Fast Diffusion Equation with Critical Exponent.- The Porous Medium Equation in an Exterior Domain.- Blow-up Free-Boundary Patterns for the Navier-Stokes Equations.- The Equation ut = uxx + uln2u: Regional Blow-up.- Blow-up in Quasilinear Heat Equations Described by Hamilton-Jacobi Equations.- A Fully Nonlinear Equation from Detonation Theory.- Further Applications to Second- and Higher-Order Equations.- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09780817641467
- Lesemotiv Verstehen
- Genre Maths
- Auflage 2004
- Anzahl Seiten 400
- Herausgeber Birkhäuser Boston
- Größe H241mm x B160mm x T27mm
- Jahr 2003
- EAN 9780817641467
- Format Fester Einband
- ISBN 0817641467
- Veröffentlichung 12.12.2003
- Titel A Stability Technique for Evolution Partial Differential Equations
- Autor Juan Luis Vázquez , Victor A. Galaktionov
- Untertitel A Dynamical Systems Approach
- Gewicht 764g
- Sprache Englisch