A STUDY ON COALESCENCE AND SPLINE FRACTAL INTERPOLATION FUNCTIONS

CHF 85.75
Auf Lager
SKU
1TR4AKM85GP
Stock 1 Verfügbar
Geliefert zwischen Fr., 19.09.2025 und Mo., 22.09.2025

Details

Fractal Interpolation Functions (FIF) and hidden variable FIF are used to approximate self-affine and non-self-affine objects respectively. To approximate, both type of data from a single IFS, the construction of Coalescence FIF is introduced. Their smoothness analysis is carried out through operator approximation. Results concerning on fractal dimension, stability and integral moment theory of Coalescence Affine FIFs are studied. Coalescence Bivariate Fractal Interpolation Surfaces (CBFIS) are developed in the present work by defining suitable vector-valued IFS. The effects of hidden variables on CBFIS and its roughness factors are also studied. The generalized spline FIF with any type of boundary conditions is introduced. The existence and methods of construction through moments and the convergence results of Cubic Spline FIFs are initiated in the present work. Coalescence Spline FIFs are introduced; their existence and method of construction are derived. Finally, Coalescence Cubic Spline FIFs are also constructed here through moments and their convergence results towards the original function are obtained.

Autorentext

A.K.B.Chand is Assistant Professor of Mathematics at IIT Madras, Chennai, India. After completing his doctorate at IIT Kanpur, he worked as a faculty member at BITS Pilani- Goa Campus, Vasco and as a Post-doctoral fellow at the University of Zaragoza, Spain. His research interest includes Fractals, Approximation Theory, Wavelets and CAGD.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Untertitel HIDDEN VARIABLE BASED COALESCENCE FRACTAL INTERPOLATION FUNCTIONS AND GENERALIZED SPLINE FRACTAL INTERPOLATION FUNCTIONS
    • Autor Arya Kumar Bedabrata Chand
    • Titel A STUDY ON COALESCENCE AND SPLINE FRACTAL INTERPOLATION FUNCTIONS
    • Veröffentlichung 22.10.2010
    • ISBN 3843361711
    • Format Kartonierter Einband
    • EAN 9783843361712
    • Jahr 2010
    • Größe H220mm x B150mm x T10mm
    • Gewicht 262g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 164
    • GTIN 09783843361712

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.