A Subspace Approach For Speech Signal Modelling And Classification

CHF 68.75
Auf Lager
SKU
O8L8N3A1JUN
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The subspace approach in speech signal analysis is commonly associated with the deployment of the singular value decomposition (SVD), or equivalently the eigendecomposition, to reveal useful subspace information about the signal of interest. The general premise that information in speech signals is almost completely contained in a lower dimensional subspace of the measurement space underscores their principal role in detecting the desired signal subspace. These ideas, which have been vigorously researched for speech enhancement problems, inspire the notion of a signal subspace model. Signal subspace modelling, as developed in this thesis, generally relates to the representation of the speech signal in terms of the signal subspace information. The signal model is composed of a set of subspace trajectories, and these trajectories jointly characterize the subspace information of the signal under consideration. Relying on an important result on noisy measurement matrices, the notion of robustness in subspace classification is also established to facilitate the formulation of robust distortion measures.

Autorentext

Dr Alan Tan received the B.Eng. (Hons) degree in Electrical Engineering from University of Malaya, Kuala Lumpur, in 1999 on the Shell scholarship, and the M.EngSc. and Ph.D. degrees from Multimedia University, Selangor, in 2003 and 2008, respectively.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 209g
    • Untertitel Theory and Algorithm
    • Autor Alan W. C. Tan
    • Titel A Subspace Approach For Speech Signal Modelling And Classification
    • Veröffentlichung 14.09.2011
    • ISBN 3846504106
    • Format Kartonierter Einband
    • EAN 9783846504109
    • Jahr 2011
    • Größe H220mm x B150mm x T8mm
    • Anzahl Seiten 128
    • GTIN 09783846504109

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470