Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
A Support Vector Machine Model for Pipe Crack Size Classification
Details
The classification of pipe crack size from its pulse- echo ultrasonic signal is a difficult task but greatly significant for defect evaluation in pipe testing and the maintenance strategy making. In this book, we use Support Vector Machines (SVM) to classify the pipe crack into correct categories, large size or small size, with the ultrasonic signal data. In order to acquire an optimal input data set, we first select the features from the time and frequency domain on the ultrasonic data. Then a combined method, Sequential Backward Selection (SBS) and Sequential Forward Selection (SFS), is used for features reduction. These two steps are referred as data preprocessing in this book. To build SVM classifier, parameter selection is critical. In this book, a Kernel Fisher Discriminant Ratio (KFD Ratio) is proposed for speeding the parameter selection of the SVM classifier. As an indicator, KFD Ratio can greatly shorten computation time for finding the best parameters. To further improve the performance of the SVM classifier in terms of classification accuracy, a data dependent kernel is adopted for creating a more effective one.
Autorentext
Chuxiong Miao, M.Sc Professional Engineer in Canada
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639294057
- Sprache Englisch
- Genre Allgemeines & Lexika
- Größe H220mm x B150mm x T6mm
- Jahr 2010
- EAN 9783639294057
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-29405-7
- Titel A Support Vector Machine Model for Pipe Crack Size Classification
- Autor Chuxiong Miao , Ming Zuo
- Untertitel Reseach on SVM Classification
- Gewicht 161g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 96