Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Adaptive Identification of Acoustic Multichannel Systems Using Sparse Representations
Details
This book treats the topic of extending the adaptive filtering theory in the context of massive multichannel systems by taking into account a priori knowledge of the underlying system or signal. The starting point is exploiting the sparseness in acoustic multichannel system in order to solve the non-uniqueness problem with an efficient algorithm for adaptive filtering that does not require any modification of the loudspeaker signals.
The book discusses in detail the derivation of general sparse representations of acoustic MIMO systems in signal or system dependent transform domains. Efficient adaptive filtering algorithms in the transform domains are presented and the relation between the signal- and the system-based sparse representations is emphasized. Furthermore, the book presents a novel approach to spatially preprocess the loudspeaker signals in a full-duplex communication system. The idea of the preprocessing is to prevent the echoes from being captured by the microphone array in order to support the AEC system. The preprocessing stage is given as an exemplarily application of a novel unified framework for the synthesis of sound figures. Finally, a multichannel system for the acoustic echo suppression is presented that can be used as a postprocessing stage for removing residual echoes. As first of its kind, it extracts the near-end signal from the microphone signal with a distortionless constraint and without requiring a double-talk detector.
Offers adaptive filtering theory in the context of massive multichannel systems Shows that sparse representations can be derived based on prior knowledge about the system or the signal Includes an approach for highly correlated loudspeaker signals of multichannel reproduction systems Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Fundamentals of Adaptive Filter Theory.- Spatio-Temporal Regularized Recursive Least Squares Algorithm.- Sparse Representation of Multichannel Acoustic Systems.- Unique System Identification from Projections.- Geometrical Constraints.- Acoustic Echo Suppression.- Conclusion.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319362878
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage Softcover reprint of the original 1st ed. 2015
- Sprache Englisch
- Anzahl Seiten 113
- Herausgeber Springer, Berlin
- Größe H235mm x B155mm
- Jahr 2016
- EAN 9783319362878
- Format Kartonierter Einband
- ISBN 978-3-319-36287-8
- Veröffentlichung 22.09.2016
- Titel Adaptive Identification of Acoustic Multichannel Systems Using Sparse Representations
- Autor Karim Helwani
- Untertitel T-Labs Series in Telecommunication Services
- Gewicht 2058g