Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Advanced data-driven approaches for modelling and classification
Details
In this book, the Fast Recursive Algorithm (FRA) and Two-Stage Selection (TSS) methods proposed by Prof. Li and Prof. Irwin have been improved to integrate Bayesian regularisation to prevent over-fitting and leave-one-out cross validation for automatic model construction. To further enhance model generalization capability, some heuristic methods were also embedded in the two-stage selection to optimize the non-linear parameters involved in subset model construction. These include Particle Swarm Optimization (PSO), Defferential Evolution (DE), and Extreme Learning Machine (ELM). The effectiveness and efficiency of all these advanced methods have been confirmed on both well-known benchmarks and real world data sets from automotive engine and polymer extrusion applications.
Autorentext
Dr Jing Deng received his B.Sc.degree from National University of Defence Technology, Hunan, China, in 2005, the M.Sc.degrees from the Shanghai University, Shanghai, China, in 2007, and the Ph.D. degree from the Intelligent Systems and Control(ISAC) Group at Queen's University Belfast,UK in 2011. From then, he worked as a research Fellow at QUB.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659301414
- Genre Elektrotechnik
- Sprache Englisch
- Anzahl Seiten 160
- Größe H220mm x B150mm x T10mm
- Jahr 2012
- EAN 9783659301414
- Format Kartonierter Einband
- ISBN 3659301418
- Veröffentlichung 12.11.2012
- Titel Advanced data-driven approaches for modelling and classification
- Autor Jing Deng
- Untertitel with applications to automotive engine fault detection and polymer extrusion control
- Gewicht 256g
- Herausgeber LAP LAMBERT Academic Publishing