Advanced Linear Modeling

CHF 103.95
Auf Lager
SKU
BRRLHOIH5E3
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book will serve as a reference book for graduate students and researchers in statistics. Written by a leading researcher in the field, it discusses advanced topics in the area of linear models.

Presents a collection of methodologies formulated and developed in the framework of linear models Offers accompanying R code online for the included analyses Features several new chapters, as well as new and expanded coverage in this 3rd edition Designed to be used independently or in conjunction with the theoretical Plane Answers to Complex Questions

Autorentext
Ronald Christensen is a Professor of Statistics at the University of New Mexico, Fellow of the American Statistical Association (ASA) and the Institute of Mathematical Statistics, former Chair of the ASA Section on Bayesian Statistical Science and former Editor of The American Statistician. His book publications include Plane Answers to Complex Questions (Springer 2011), Log-Linear Models and Logistic Regression (Springer 1997), Analysis of Variance, Design, and Regression (1996, 2016), and Bayesian Ideas and Data Analysis (2010, with Johnson, Branscum and Hanson).

Klappentext
Now in its third edition, this companion volume to Ronald Christensen's Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theorybest linear prediction, projections, and Mahalanobis distance to extend standard linear modeling into the realms of Statistical Learning and Dependent Data.
This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.

Inhalt

  1. Nonparametric Regression.- 2. Penalized Estimation.- 3. Reproducing Kernel Hilbert Spaces.- 4. Covariance Parameter Estimation.- 5. Mixed Models and Variance Components.- 6. Frequency Analysis of Time Series.- 7. Time Domain Analysis.- 8. Linear Models for Spacial Data: Kriging.- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications.- 11. Generalized Multivariate Linear Models and Longitudinal Data.- 12. Discrimination and Allocation.- 13. Binary Discrimination and Regression.- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis.- A Mathematical Background.- B Best Linear Predictors.- C Residual Maximum Likelihood.- Index.- Author Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030291662
    • Sprache Englisch
    • Auflage Third Edition 2019
    • Größe H235mm x B155mm x T34mm
    • Jahr 2021
    • EAN 9783030291662
    • Format Kartonierter Einband
    • ISBN 3030291669
    • Veröffentlichung 08.01.2021
    • Titel Advanced Linear Modeling
    • Autor Ronald Christensen
    • Untertitel Statistical Learning and Dependent Data
    • Gewicht 943g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 632
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470