Advances in Bio-inspired Computing for Combinatorial Optimization Problems

CHF 165.55
Auf Lager
SKU
3HOOEL8LIDG
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book illustrates recent bio-inspired efficient algorithms for solving NP-hard problems. Discusses theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots, variations of the Traveling Salesman Problem and more.

"Advances in Bio-inspired Combinatorial Optimization Problems" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.

Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.

Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive ants; virtual sensitive robots; ant-based techniques for static and dynamic routing problems; stigmergic collaborative agents and learning sensitive agents.

This monograph is useful for researchers, students and all people interested in the recent natural computing frameworks. The reader is presumed to have knowledge of combinatorial optimization, graph theory, algorithms and programming. The book should furthermore allow readers to acquire ideas, concepts and models to use and develop new software for solving complex real-life problems.


Introduces new bio-inspired techniques based on ants, agents and virtual robots Solves real-life complex problems using the introduced bio-inspired techniques Recent research on Bio-inspired Computing for Combinatorial Optimization Problems

Inhalt
Part I Biological Computing and Optimization.- Part II Ant Algorithms.- Part III Bio-inspired Multi-Agent Systems.- Part IV Applications with Bio-inspired Algorithms.- Part V Conclusions and Remarks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642401787
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T16mm
    • Jahr 2013
    • EAN 9783642401787
    • Format Fester Einband
    • ISBN 3642401783
    • Veröffentlichung 20.08.2013
    • Titel Advances in Bio-inspired Computing for Combinatorial Optimization Problems
    • Autor Camelia-Mihaela Pintea
    • Untertitel Intelligent Systems Reference Library 57
    • Gewicht 471g
    • Herausgeber Springer
    • Anzahl Seiten 200

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470