Advances in Complex Data Modeling and Computational Methods in Statistics

CHF 76.30
Auf Lager
SKU
BN5S8EMETBJ
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 07.10.2025 und Mi., 08.10.2025

Details

The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.

Offers numerous step-by-step tutorials to help the reader to learn quickly A special chapter on next generation Flash prepares readers for the future Includes suggestions on how to protect flash sites from hackers

Inhalt
1 Antonino Abbruzzo, Angelo M. Mineo: Inferring networks from high-dimensional data with mixed variables.- 2 Federico Andreis, Fulvia Mecatti: Rounding Non-integer Weights in Bootstrapping Non-iid Samples: actual problem or harmless practice?.- 3 Marika Arena, Giovanni Azzone, Antonio Conte, Piercesare Secchi, Simone Vantini: Measuring downsize reputational risk in the Oil & Gas industry.- 4 Laura Azzimonti, Marzia A. Cremona, Andrea Ghiglietti, Francesca Ieva, Alessandra Menafoglio, Alessia Pini, Paolo Zanini: BARCAMP Technology Foresight and Statistics for the Future.- 5 Francesca Chiaromonte, Kateryna D. Makova: Using statistics to shed light on the dynamics of the human genome: A review.- 6 Nader Ebrahimi, Ehsan S. Soofi and Refik Soyer: Information Theory and Bayesian Reliability Analysis: Recent Advances.- 7 Stephan F. Huckemann: (Semi-) Intrinsic Statistical Analysis on non-Euclidean Spaces.- 8 John T. Kent: An investigation of projective shape space.- 9 Fabio Manfredini, Paola Pucci, Piercesare Secchi, Paolo Tagliolato, Simone Vantini, Valeria Vitelli: Treelet Decomposition of Mobile Phone Data for Deriving City Usage and Mobility Pattern in the Milan Urban Region.- 10 Cristina Mazzali, Mauro Maistriello, Francesca Ieva, Pietro Barbieri: Methodological issues in the use of administrative databases to study heart failure.- 11 Andrea Mercatant: Bayesian inference for randomized experiments with noncompliance and nonignorable missing data.- 12 Antonio Pulcini, Brunero Liseo: Approximate Bayesian Quantile Regression for Panel Data.- 13 Laura M. Sangalli: Estimating surfaces and spatial fields via regression models with differential regularization.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319111483
    • Editor Piercesare Secchi, Anna Maria Paganoni
    • Sprache Englisch
    • Auflage 2015
    • Größe H241mm x B160mm x T18mm
    • Jahr 2014
    • EAN 9783319111483
    • Format Fester Einband
    • ISBN 3319111485
    • Veröffentlichung 18.11.2014
    • Titel Advances in Complex Data Modeling and Computational Methods in Statistics
    • Untertitel Contributions to Statistics
    • Gewicht 500g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 220
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.