Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Advances in Neural Networks - ISNN 2019
Details
This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware. ****
Inhalt
Learning System, Graph Model, and Adversarial Learning.- Time Series Analysis, Dynamic Prediction, and Uncertain Estimation.- Model Optimization, Bayesian Learning, and Clustering.- Game Theory, Stability Analysis, and Control Method.- Signal Processing, Industrial Application, and Data Generation.- Image Recognition, Scene Understanding, and Video Analysis.- Bio-signal, Biomedical Engineering, and Hardware.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030228071
- Editor Huchuan Lu, Zhanshan Wang, Huajin Tang
- Sprache Englisch
- Auflage 1st edition 2019
- Größe H235mm x B155mm x T35mm
- Jahr 2019
- EAN 9783030228071
- Format Kartonierter Einband
- ISBN 303022807X
- Veröffentlichung 27.06.2019
- Titel Advances in Neural Networks - ISNN 2019
- Untertitel 16th International Symposium on Neural Networks, ISNN 2019, Moscow, Russia, July 10-12, 2019, Proceedings, Part II
- Gewicht 955g
- Herausgeber Springer International Publishing
- Anzahl Seiten 640
- Lesemotiv Verstehen
- Genre Informatik