Advances in Spatio-Temporal Segmentation of Visual Data

CHF 155.20
Auf Lager
SKU
CN67G2OE1VK
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Do., 30.10.2025 und Fr., 31.10.2025

Details

This book proposes a number of promising models and methods for adaptive segmentation, swarm partition, permissible segmentation, and transform properties, as well as techniques for spatio-temporal video segmentation and interpretation, online fuzzy clustering of data streams, and fuzzy systems for information retrieval. The main focus is on the spatio-temporal segmentation of visual information.
Sets of meaningful and manageable image or video parts, defined by visual interest or attention to higher-level semantic issues, are often vital to the efficient and effective processing and interpretation of viewable information. Developing robust methods for spatial and temporal partition represents a key challenge in computer vision and computational intelligence as a whole.
This book is intended for students and researchers in the fields of machine learning and artificial intelligence, especially those whose work involves image processing and recognition, video parsing, and content-based image/video retrieval.


Presents recent research on the spatio-temporal segmentation of visual data Provides systematic information on the research, development, and implementation of advanced spatio-temporal segmentation of visual data for components, networks, and complex systems Addresses software, programmable and hardware components, communications, cloud and IoT-based systems, and IT infrastructures

Inhalt
Adaptive Edge Detection Models and Algorithms.- Swarm Methods of Image Segmentation.- Spatio-temporal Data Interpretation Based on Perceptional Model.- Spatio-Temporal Video Segmentation.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030354824
    • Auflage 1st edition 2020
    • Editor Vladimir Mashtalir, Vitaly Levashenko, Igor Ruban
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T16mm
    • Jahr 2021
    • EAN 9783030354824
    • Format Kartonierter Einband
    • ISBN 3030354822
    • Veröffentlichung 17.01.2021
    • Titel Advances in Spatio-Temporal Segmentation of Visual Data
    • Untertitel Studies in Computational Intelligence 876
    • Gewicht 435g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 284

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.