Advancing Recommender Systems with Graph Convolutional Networks

CHF 165.15
Auf Lager
SKU
SQ6MNGQUGEF
Stock 1 Verfügbar
Geliefert zwischen Mo., 26.01.2026 und Di., 27.01.2026

Details

This book systematically examines scalability and effectiveness challenges related to the application of graph convolutional networks (GCNs) in recommender systems. By effectively modeling graph structures, GCNs excel in capturing high-order relationships between users and items, enabling the creation of enriched and expressive representations.

The book focuses on two overarching problem categories: the first area deals with problems specific to GCN-based recommendation models, including over-smoothing, noisy neighboring nodes, and interpretability limitations. The second one encompasses broader challenges in recommendation systems that GCN-based methods are particularly well-suited to address as the attribute missing problem or feature misalignment. Through rigorous exploration of these challenges, this book presents innovative GCN-based solutions to push the boundaries of recommender system design. To this end, techniques such as interest-aware message-passing strategy, cluster-based collaborative filtering, semantic aspects extraction, attribute-aware attention mechanisms, and light graph transformer are presented.

Each chapter combines theoretical insights with practical implementations and experimental validation, offering a comprehensive resource for researchers, advanced professionals, and graduate students alike.


Examines scalability and effectiveness challenges related to the application of GCNs in recommender systems Presents innovative GCN-based techniques to push the boundaries of recommender system design Combines theoretical insights with practical implementations and experimental validation

Autorentext

Fan Liu is a Research Fellow with the School of Computing, National University of Singapore (NUS). His research interests lie primarily in multimedia computing and information retrieval. His work has been published in a set of top forums, including ACM SIGIR, MM, WWW, TKDE, TOIS, TMM, and TCSVT. He is an area chair of ACM MM and a senior PC member of CIKM.

Liqiang Nie is Professor at and Dean of the School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen). His research interests are primarily in multimedia computing and information retrieval. He has co-authored more than 200 articles and four books. He is a regular area chair of ACM MM, NeurIPS, IJCAI, and AAAI, and a member of ICME steering committee. He has received many awards, like the ACM MM and SIGIR best paper honorable mention in 2019, SIGMM rising star in 2020, TR35 China 2020, DAMO Academy Young Fellow in 2020, and SIGIR best student paper in 2021.


Inhalt

Preface.- 1) Introduction.- 2) Interest-aware Message-Passing Graph Convolutional Network.- 3) Cluster-based Graph Collaborative Filtering.- 4) Semantic Aspect-aware Graph Convolutional Network.- 5) Attribute-aware Attentive Graph Convolutional Network.- 6) Light Graph Transformer Model.- 7) Research Frontiers.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031850929
    • Genre Information Technology
    • Lesemotiv Verstehen
    • Anzahl Seiten 176
    • Größe H235mm x B155mm x T10mm
    • Jahr 2025
    • EAN 9783031850929
    • Format Kartonierter Einband
    • ISBN 3031850920
    • Veröffentlichung 30.03.2025
    • Titel Advancing Recommender Systems with Graph Convolutional Networks
    • Autor Fan Liu , Liqiang Nie
    • Gewicht 277g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470