Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Agents and Artificial Intelligence
Details
This book constitutes selected papers from the refereed proceedings of the 13th International Conference on Agents and Artificial Intelligence, ICAART 2021, which was held online during February 46, 2021.
A total of 72 full and 99 short papers were carefully reviewed and selected for the conference from a total of 298 submissions; 17 selected full papers are included in this book. They were organized in topical sections named agents and articial intelligence.
Inhalt
Agents.- Specication Aware Multi-Agent Reinforcement Learning.- Task Bundle Delegation for Reducing the Flowtime.- A Detailed Analysis of a Systematic Review about Requirements Engineering Processes for Multi-Agent Systems.- Automatically-generated Agent Organizations for Flexible Workow Enactment.- Negotiation Considering Privacy Loss on Asymmetric Multi-objective Decentralized Constraint Optimization Problem.- Articial Intelligence.- Utilizing Out-domain Datasets to Enhance Multi-task Citation Analysis.- Using Possibilistic Networks to Compute Learning Course Indicators.- Assured Deep Multi-Agent Reinforcement Learning for Safe Robotic Systems.- How to Segment Handwritten Historical Chronicles using Fully Convolutional Networks?.- On the Relationship with Toulmin Method to Logic-based Argumentation.- Informer: An ecient Transformer Architecture using Convolutional Layers.- Improving the Generalization of Deep Learning Classication Models in Medical Imaging using Transfer Learning and Generative Adversarial Networks.- An Interpretable Word Sense Classier for Human Explainable Chatbot.- A Tsetlin Machine Framework for Universal Outlier and Novelty Detection.- Adding Supply/Demand Imbalance-sensitivity to Simple Automated Trader-agents.- Advances in Measuring Ination within Virtual Economies using Deep Reinforcement Learning.- Practical City Scale Stochastic Path Planning with Pre-computation.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031101601
- Genre Information Technology
- Auflage 1st edition 2022
- Editor Ana Paula Rocha, Jaap van den Herik, Luc Steels
- Lesemotiv Verstehen
- Anzahl Seiten 360
- Größe H235mm x B155mm x T20mm
- Jahr 2022
- EAN 9783031101601
- Format Kartonierter Einband
- ISBN 303110160X
- Veröffentlichung 20.07.2022
- Titel Agents and Artificial Intelligence
- Untertitel 13th International Conference, ICAART 2021, Virtual Event, February 4-6, 2021, Revised Selected Papers
- Gewicht 546g
- Herausgeber Springer International Publishing
- Sprache Englisch