Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
AI-Driven Security: Enhancing Large Language Models and Cybersecurity
Details
In an era of rapid advancements in artificial intelligence, cybersecurity threats continue to evolve, particularly in the domain of large language models, financial systems, and password security. This book delves into the critical aspects of AI-driven security, offering insights into risk management, defensive mechanisms, and ethical AI deployment. Through a structured approach, this book explores:1.The vulnerabilities of financial large language models and prompt injection attack defenses.2.Ownership protection mechanisms through watermarking and fingerprinting techniques.3.AI-powered security policy automation for operating systems.4.Password security analysis leveraging hybrid rule-based and ML techniques. With extensive research and case studies, "AI-Driven Security" provides a comprehensive guide to fortifying AI applications against cyber threats, making it a must-read for cybersecurity professionals, AI researchers, and industry practitioners.
Autorentext
Rajesh Daruvuri is an AI and cloud leader, shaping security, business intelligence, and AI ethics. An IEEE senior member and SXSW judge, he mentors and speaks at global AI forums.Kiran Kumar Patibandla is a technologist with 20+ years of innovation, pioneering Conversational AI and AI-driven retail insights, with patents in digital media and GenAI.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786208434717
- Genre Books on Technology
- Anzahl Seiten 144
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 233g
- Untertitel Large Language Models (LLMs) Security
- Autor Rajesh Daruvuri , Kiran Kumar Patibandla
- Titel AI-Driven Security: Enhancing Large Language Models and Cybersecurity
- Veröffentlichung 27.03.2025
- ISBN 978-620-8-43471-7
- Format Kartonierter Einband
- EAN 9786208434717
- Jahr 2025
- Größe H220mm x B150mm x T9mm
- Sprache Englisch