AI Time Series Control System Modelling

CHF 137.50
Auf Lager
SKU
QKJ2KGT1KM0
Stock 1 Verfügbar
Geliefert zwischen Fr., 16.01.2026 und Mo., 19.01.2026

Details

This book describes the practical application of artificial intelligence (AI) methods using time series data in system control. This book consistently discusses the application of machine learning to the analysis and modelling of time series data of physical quantities to be controlled in the field of system control.
Since dynamic systems are not stable steady states but changing transient states, the changing transient states depend on the state history before the change. In other words, it is essential to predict the change from the present to the future based on the time history of each variable in the target system, and to manipulate the system to achieve the desired change.
In short, time series is the key to the application of AI machine learning to system control. This is the philosophy of this book: "time series data" + "AI machine learning" = "new practical control methods".
This book can give my helps to undergradate or graduate students, institute researchers and senior engineers whose scientific background are engineering, mathematics, physics and other natural sciences.


Covers theoretical basics and practical examples of machine learning modelling Explains how to build control models from time-series data using machine learning Manipulates the system to achieve the desired change

Autorentext

Prof. Chuzo Ninagawa is CEO of N Laboratory, Inc. and Professor of Smart Grid Power Control Engineering Joint Research Laboratory Gifu University, Gifu, Japan. He has been Executive Chief Engineer of Mitsubishi Heavy Industries, Ltd., which is one of the largest hi-tech manufacturers in Japan. His research interests span various topics of smart grid, with special focus on virtual power plant (VPP) with a large-scale aggregation of fast automated demand responses. He has published over 110 academic papers and three advanced research books.


Inhalt
Introduction.- Linear Time Series Modeling.- Deep Learning AI Modeling.- LSTM AI Modeling.- Optimal Control by Time-Series AI Model.- The Reality of Time Series Learning Data Collection.- Practical Work on Time Series AI Modeling.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811945960
    • Lesemotiv Verstehen
    • Genre Thermal Engineering
    • Auflage 23001 A. 1st edition 2023
    • Anzahl Seiten 237
    • Herausgeber Springer Nature Singapore
    • Größe H13mm x B155mm x T235mm
    • Jahr 2023
    • EAN 9789811945960
    • Format Kartonierter Einband
    • ISBN 978-981-1945-96-0
    • Titel AI Time Series Control System Modelling
    • Autor Chuzo Ninagawa
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470