Aleksandrov-Rassias Problems on Distance Preserving Mappings

CHF 79.05
Auf Lager
SKU
818L01MRPJR
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book provides readers with an engaging explanation of the Aleksandrov problem, giving readers an overview of the process of solving Aleksandrov-Rassias problems, which are still actively studied by many mathematicians, and familiarizing readers with the details of the proof process. In addition, effort has been put into writing this book so that readers can easily understand the content, saving readers the trouble of having to search the literature on their own. In fact, this book logically and kindly introduces the basic theories of related fields.


Comprehensive resource on all classical knowledge and concepts related to Aleksandrov-Rassias problems Highlights interdisciplinary analysis and applications of Aleksandrov-Rassias problems Digestible, clearly understandable material that makes the content accessible to students and researchers alike

Autorentext

Soon-Mo Jung was a mathematics professor at Hongik University in Republic of Korea from March 1995 to February 2023. His research interests include measure theory, number theory, Euclidean geometry, and classical analysis. He received his bachelor's, master's and doctoral degrees in 1988, 1992 and 1994, respectively, from the Department of Mathematics at the University of Stuttgart, Germany. In particular, among his important research topics, classical analysis and Euclidean geometry account for a large portion, and these topics are closely related to the Aleksandrov-Rassias problems, the main subject of this book. He published numerous papers and books in the fields of measure theory, fractal geometry, number theory, classical analysis, Euclidean geometry, discrete mathematics, differential equations, and functional equations.


Inhalt

Preface.- Preliminaries.- Aleksandrov Problem.- Aleksandrov-Benz Problem.- Aleksandrov-Rassias Problems.- Rassias and Xiang's Partial Solutions.- Inequalities for Distances between Points.- Jung, Lee, and Nam's Partial Solutions.- Miscellaneous.- Bibliography.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031776120
    • Lesemotiv Verstehen
    • Genre Maths
    • Anzahl Seiten 216
    • Herausgeber Springer Nature Switzerland
    • Größe H240mm x B168mm x T12mm
    • Jahr 2025
    • EAN 9783031776120
    • Format Kartonierter Einband
    • ISBN 3031776127
    • Veröffentlichung 25.01.2025
    • Titel Aleksandrov-Rassias Problems on Distance Preserving Mappings
    • Autor Soon-Mo Jung
    • Untertitel Frontiers in Mathematics
    • Gewicht 371g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470